高斯曲率

王朝百科·作者佚名  2009-11-03
窄屏简体版  字體: |||超大  

曲面论中最重要的内蕴几何量。设曲 面在P点处 的两个主曲率为k1,k2,它们的乘积k=k1·k2称为曲面 于该点的总曲率或高斯曲率。它反映了曲面的一股弯曲程度。高斯曲率k的绝对值有明显的几何意义。设Δб是曲面上包含P点的一小片曲面(其面积仍用Δб表示),把Δб上的每点的单位法向量n平移到E3的原点O处,那么n的终点 的轨迹是 以O为中心的单位球面 S2上的一块区域 Δб* 。这个对应称为高斯映射。曲面在P点邻近弯曲程度可用Δб*( 其面积仍用Δб*表示)与Δб的面积比刻画。曲面在P点的 高斯曲率的 绝对值正是这个比值当Δб收缩成P点时的极限。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航