贪心法

王朝百科·作者佚名  2010-01-22
窄屏简体版  字體: |||超大  

贪心法(Greedy algorithm)是一种在每一步选择中都采取在当前状态下最好/优的选择,从而希望导致结果是最好/优的算法。比如在旅行推销员问题中,如果旅行员每次都选择最近的城市, 那这就是一种贪心算法。

贪心算法在有最优子结构的问题中尤为有效。最优子结构的意思是局部最优解能决定全局最优解。简单地说,问题能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。

贪心算法与动态规划的不同在于它每对每个子问题的解决方案都做出选择,不能回退。动态规划则会保存以前的运算结果,并根据以前的结果对当前进行选择,有回退功能。

贪心法可以解决一些最优性问题,如:求图中的最小生成树、求哈夫曼编码……对于其他问题,贪心法一般不能得到我们所要求的答案。一旦一个问题可以通过贪心法来解决,那么贪心法一般是解决这个问题的最好办法。由于贪心法的高效性以及其所求得的答案比较接近最优结果,贪心法也可以用作辅助算法或者直接解决一些要求结果不特别精确的问题。

贪心法解题特点

贪心法有一个共同的点就是在最优求解的过程中都采用一种局部最优策略,把问题范围和规模缩小最后把每一步的结果合并起来得到一个全局最优解。

贪心法解题的一般步骤

(1)从问题的某个初始解出发;

(2)采用循环语句,当可以向求解目标前进一部时,就根据局部最优策略,得到一个部分解,缩小问题的范围和规模;

(3)将所有部分解综合起来,得到问题最终解。

该算法存在问题:

1. 不能保证求得的最后解是最佳的;

2. 不能用来求最大或最小解问题;

3. 只能求满足某些约束条件的可行解的范围。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航