雅可比椭球体

王朝百科·作者佚名  2010-01-24
窄屏简体版  字體: |||超大  

【中文词条】雅可比椭球体

【外文词条】Jacobi's ellipsoid

【作者】易照华

均匀流体球自转时的一种平衡形状。1834年﹐雅可比证明﹕三轴椭球体(椭球体的三个轴彼此不相等)可以为均匀流体自转时的平衡形状。条件是参数Ω (见马克劳林椭球体)满足下列条件﹕

< =0.18711…。

若a ﹑b 为椭球体赤道截面椭圆的半长径和半短径﹑c 为椭球体的极半径(在自转轴上)﹐则a >c ﹑b >c 。这表明平衡形状只能是扁球体。对小于 的任一Ω 值﹐都相应地存在一个三轴椭球体(a >b >c )的平衡形状﹐称为雅可比椭球体。在极限情况 = 时﹐a =b ﹐相应的雅可比椭球体就成为马克劳林椭球体。雅可比椭球体的赤道椭圆可以很扁﹐这在太阳系内的较大天体中尚未发现﹐但在星系中﹐如棒旋星系可能属于这种类型。李亚普诺夫等人证明﹐雅可比椭球体是稳定的平衡形状。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航