分享
 
 
 

基本粒子

王朝百科·作者佚名  2010-02-06
窄屏简体版  字體: |||超大  

一、物理概念

【简单介绍】名称:基本粒子

英语名称:elementary particle

基本粒子指人们认知的构成物质的最小最基本的单位。。但在夸克理论提出后,人们认识到基本粒子也有复杂的结构,故现在一般不提“基本粒子”这一说法。根据作用力的不同,粒子分为强子、轻子和传播子[1]三大类。

强子就是是所有参与强力作用的粒子的总称。它们由夸克组成,已发现的夸克有六种,它们是:顶夸克、上夸克、下夸克、奇异夸克、粲夸克和底夸克。其中理论预言顶夸克的存在,2007年1月30日发现于美国费米实验室。现有粒子中绝大部分是强子,质子、中子、π介子等都属于强子。(另外还发现反物质,有著名的反夸克,现已被发现且正在研究其利用方法,由此我们推测,甚至可能存在反地球,反宇宙)

轻子就是只参与弱力、电磁力和引力作用,而不参与强相互作用的粒子的总称。轻子共有六种,包括电子、电子中微子、μ子、μ子中微子、τ子、τ子中微子。电子、μ子和τ子是带电的,所有的中微子都不带电;τ子是1975年发现的重要粒子,不参与强作用,属于轻子,但是它的质量很重,是电子的3600倍,质子的1.8倍,因此又叫重轻子。

传播子也属于基本粒子。传递强作用的胶子共有8种,1979年在三喷注现象中被间接发现,它们可以组成胶子球,由于色禁闭现象,至今无法直接观测到。传递弱作用的W+,W-和Z0。重矢量玻色子是1983年发现的,非常重,是质子的80一90倍。

【主要特征】基本粒子要比原子、分子小得多,现有最高倍的电子显微镜也不能观察到。质子、中子的大小,只有原子的十万分之一。而轻子和夸克的尺寸更小,还不到质子、中子的万分之一。

粒子的质量是粒子的另外一个主要特征量。按照粒子物理的 规范理论,所有规范粒子的质量为零,而规范不变性以某种方式 被破坏了,使夸克、带电轻子、中间玻色子获得质量。现有的粒子质量范围很大。光子、胶子是无质量的,电子质量很小,π介子质量为电子质量的280倍;质子、中子都很重,接近电子质量的2000倍,已知最重的粒子是顶夸克。己发现的六种夸克,从下夸克到顶夸克,质量从轻到重。中微子的质量非常小,目前己测得的电子中微子的质量为电子质量的七万分之一,已非常接近零。

粒子的寿命是粒子的第三个主要特征量。电子、质子、中微子是稳定的,称为 "长寿命"粒子;而其他绝大多数的粒子是不稳定的,即可以衰变。一个自由的中子会衰变成一个质子、一个电子和一个中微子; 一个π介子衰变成一个μ子和一个中微子。粒子的寿命以强度衰减到一半的时间来定义。质子是最稳定的粒子,实验已测得的质子寿命大于10的33次方年。

粒子具有对称性,有一个粒子,必存在一个反粒子。1932年科学家发现了一个与电子质量相同但带一个正电荷的粒子,称为正电子;后来又发现了一个带负电、质量与质子完全相同的粒子,称为反质子;随后各种反夸克和反轻子也相继被发现。一对正、反粒子相碰可以湮灭,变成携带能量的光子,即粒子质量转变为能量;反之,两个高能粒子碰撞时有可能产生一对新的正、反粒子,即能量也可以转变成具有质量的粒子。

粒子还有另一种属性—自旋。自旋为半整数的粒子称为费米子,为整数的称为玻色子。

物质是不断运动和变化的,在变化中也有些东西不变,即守恒。粒子的产生和衰变过程就要遵循能量守恒定律。此外还有其他的守恒定律,例如轻子数和夸克数守恒,这是基于实验上观察不到单个轻子和夸克的产生和湮灭,必须是粒子、反粒子成对地产生和湮灭而总结出来的。

微观世界的粒子具有双重属性粒子性和波动性。描述粒子的粒子性和波动性的双重属性,以及粒子的产生和消灭过程的基本理论是量子场论。量子场论和规范理论十分成功地描述了粒子及其相互作用。

【主要结构】1933年,狄拉克关于正电子存在的预言被证实,1936年安德森因此获得诺贝尔物理学奖。1955年塞格雷和钱伯林利用高能加速器发现了反质子,他们因此获1959年物理奖。第二年又有人发现了反质子。1959年王淦昌等人发现了反西格玛负超子。这些都为反物质的存在提供了证据。莱因斯等利用大型反应堆,经过3年的努力,终于在1956年直接探测到铀裂变过程中所产生的反中微子。他因此获 1995年物理学奖。到1968年,人们才探测到了来自太阳的中微子。 1947年鲍威尔利用自己发明的照相乳胶技术在宇宙线中找到了1934年汤川秀树提出的介子场理论中预言的介子。汤川秀树获1949年物理奖,鲍威尔获 1950年物理奖。到50年代末,基本粒子的数目已达30种。这些粒子绝大多数是从宇宙射线中发现的。自1951年费米首次发现共振态粒子以来,至80年代已发现的共振态粒子达300多种。

所有的基本粒子都是共振态,共振态的发现其实已经揭开了基本粒子的秘密,即所有的基本粒子都是共振态.共振态分二类,一类是不稳定的,如强子类;另一类是稳定的,如电子.中子等.它门不容易发生自发衰变.不存在绝对稳定的基本粒子,如电子在一定的条件下也会堙灭(与正电子相遇时)。产生基本粒子的外因是物质波的交汇,交汇处形成波包.内因是交汇处发生了共振,客观表现为共振态--即基本粒子的产生.

夸 克 模 型

基本粒子如此之多,难道它们真的都是最基本、不可分的吗?近40年来大量实验实事表明至少强子是有内部结构的。1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。他因此获1969年物理奖。1990年弗里德曼、肯德尔和泰勒因在粒子物理学夸克模型发展中的先驱性工作而获物理奖。1965年,费曼、施温格、朝永振一郎因在量子电动力学重整化和计算方法的贡献,对基本粒子物理学产生深远影响而获物理奖。温伯格和萨拉姆等以夸克模型为基础,完成了描述电磁相互作用和弱相互作用的弱电统一理论。他们因此而获1979年物理奖。目前统一场论的发展正向着把强相互作用统一起来的大统一理论和把引力统一进来的超统一理论前进。并且这种有关小宇宙的理论与大宇宙研究的结合,正在推进着宇宙学的进展。

【基本粒子表】基本粒子的概念也在随着物理学的发展而不断的变化着,人们的认识也在朝着揭示微观世界的更深层次不断地深入。

1. “基本粒子”的“祖孙”三代

从汤姆孙发现电子到1932年发现中子,人们认识到质子、中子、电子和光子可以称为基本粒子。当时一度认为一切都已搞清楚:质子和中子构成一切原子核;原子核和电子则构造了自然界的一切原子和分子,而光子仅仅是构成光与电磁波的最小单元。然而好景不长,对物质结构的这样一种“圆满”的解释并没能持续多久,人们很快发觉当时所发现的基本粒子不能圆满地解释核力。

第一代

1935年著名的日本物理学家汤川秀树(1907~1981年)大胆假设,很可能还有未曾发现的新粒子。汤川秀树认为,就像电磁相互作用是通过交换光子而实现的那样,核力是通过核子间交换一种介子而实现的。他还估算出了这种粒子的质量大约是电子质量的200倍。两年之后,美国物理学家卡尔·戴维·安德孙(1905~年)在宇宙射线中发现了一种带电粒子,它的质量是电子的200倍左右,被命名为“m(缪)介子”。理论预言的成功使人们倍感欣慰,但进一步的考察却令人十分扫兴。因为这种m介子根本不与核子相互作用,很明显,它不可能是汤川秀树所预言的粒子。

1947年,巴西物理学家塞色,M·G·拉帝斯等人利用核乳胶在宇宙射线中又发现了一种介子——p介子。p介子的性质完全符合汤川秀树的预言,能够解释核力。实际上,“m介子”不是介子而是一种轻子,所以现在将m介子称为“m 子”。到1947年,人们认识的粒子已达14种之多。其中包括当时已发现的光子(g),正负电子(e±),正负m 子(m ±),三种p介子(p±, p0),质子(p)和中子(n)10种;另外4种就是1956年在实验室中被发现的正反电子中微子、反质子和反中子。这14种粒子各有用武之地,其中质子、中子和电子构成一切稳定的物质;光子是电磁力的传递者,p介子传递核力,中微子在b衰变中扮演不可缺少的角色(b衰变是原子核自发地放射出电子或正电子,或者俘获原子内电子轨道上的一个电子,而发生的转变);而m子则在宇宙射线中出现。以上这些就构成了第一代粒子。

第二代

稳定的秩序似乎并没有维持多久,“完满”的旧理论很快就被一系列新的疑问所冲破。在发现p 介子的1947年,人们利用宇宙射线在云室中拍下了两张有V字形径迹的照片,衰变产物是p±介子和质子(p)。这两种径迹不能用任何当时已发现的第一代粒子来解释,于是人们很自然的想到,这一定是两种未发现的粒子衰变所形成的。在之后的几年里,人们拍摄了十多万张宇宙射线照片,终于发现了这两种不带电的新粒子。其中一个质量为电子质量的1000倍,现在被叫做“k0介子”;另一个约为电子质量的2200倍,现在称为 l粒子(读“兰布塔”)。我们称它们为第二代粒子,这是因为它们有两个明显的特点:(1) 产生快,衰变慢;(2) 成对(协同)产生,单个衰变。这些特点用过去的理论是无法解释的,所以又称它们为“奇异粒子”。

为了对这些奇异粒子进行定量研究,光靠宇宙射线是不够的。50 年代初,一些大型加速器陆续建成,使人们有可能利用加速器所加速的粒子来轰击原子核,以研究奇异粒子。

到1964年人们又陆续发现了一批奇异粒子,使人们发现的粒子种类达到了33种。这些奇异粒子统称为“第二代粒子”。

第三代

如果我们把已发现的30多种粒子按它们的稳定程度来分类,那么其中有的粒子是稳定的,例如质子、电子等;有的粒子却要自发地衰变成其它粒子,例如m ±、p±、π0、k0、λ0……等。它们衰变的时间一般在10-20 ~10-16秒或大于10-10秒,分别属于电磁作用衰变和弱作用衰变。到了60年代,由于加速器的能量逐步提高和高能探测器的迅速发展,在实验上也发现了衰变时间在10-24~10-23秒范围的快衰变粒子,其衰变属强作用衰变。这些粒子被称为“共振态粒子”,也称“第三代粒子”。由于它们的出现,使粒子种类猛增到上百.

【基本粒子理论】于基本粒子的结构、相互作用和运动转化规律的理论。它的理论体系就是量子场论。按照量子场论的观点,每一类型的粒子都由相应的量子场描述,粒子之间的相互作用就是这些量子场之间的耦合,而这种相互作用是由规范场量子传递的。

20世纪30年代以来,基本粒子理论在实验的基础上有了很大进展。在粒子结构方面,人们已经通过对称性的研究深入到了一个层次,肯定了强子是由层子和反层子组成的,对真空特别是对真空自发破缺也有了新的认识。在相互作用方面,发展了可描述电磁相互作用的量子电动力学,发展了能统一描述弱相互作用和电磁相互作用的弱电统一理论,可用于描述强相互作用的量子色动力学。它们无一例外都是量子规范场理论,并且都在很大程度上与实验一致,从而使人们对各种相互作用的规律性有了更深一层的了解。

基本粒子理论在本质上是一个发展中的理论,它在许多方面还不能令人满意,其中有两个具有哲学意义的理论问题尚待澄清,即:层次结构问题(见物质结构层次)和相互作用统一问题(见相互作用的统一理论)。在物质结构的原子层次上,可以把原子中的电子和原子核分割开来;在原子核层次上,也可以把组成原子核的质子和中子从原子核中分割出来。可是进入到"基本粒子"层次后,情况有了变化。这种变化在于强子虽然是由带"色"的层子和反层子组成的,但却不能把层子或反层子从强子中分割出来。这种现象被称为"色"禁闭。于是,在"基本粒子"层次,物质可分的概念增添了新的内容。可分并不等于可分割,强子以层子和反层子作为组分,但却不能从强子中分割出层子和反层子。 "色"禁闭现象的原因至今还未能从理论上找到明确答案。80年代已知的层子、反层子已达36种,轻子、反轻子已达12种,再加上作为力的传递者的规范场粒子以及 Higgs粒子,总数已很多,这就使人们去设想这些粒子的结构。物理学家们对此已经给出许多理论模型,但各模型之间差别很大,近期内还很难由实验验证和判断究竟哪个模型正确。

在弱电统一理论获得成功之后,人们又探求强作用和弱作用、电磁作用三者之间的统一,提出了各种大统一模型理论。这种理论预言质子也会衰变,其寿命约为1032±2年。但还没有得到实验上的证实。在探索力的统一理论时不能不考虑引力。但引力和弱作用力、电磁作用力、强作用力有重要差别,因为它直接与空间、时间的测度有联系,它的传递者──引力子的自旋不同于其他三种作用力的传递者,它的耦合常数有量纲~(质量)-2 ,从而会出现无穷多种发散,不能重整化。如果再考虑到A.爱因斯坦所提出的引力方程的非线性性质,就更增加了引力理论量子化、重整化的困难。初步的探讨认为,引力场也是一种规范场,这就意味着引力和其他三种基本力在逻辑上最终会统一起来。但从问题的深度上可以看到,有一些关键性的因素人们还没有掌握。

【基本粒子分族特性】族

电荷

质量(注)

平均寿命(s)

共有的衰变产物

反粒子

轻子

μ

-e

106

2.2*10^-6

evμv-e

μ+

e

-e

0.511

稳定

——

e+

ve

0

0

稳定

——

v-e

0

0

稳定

——

v-μ

重子

p

+e

938.26

稳定

——

p-

n

0

939.55

930

pev-e

n-

λ

0

1115.6

2.5*10^-10

pπ-,nπ0

λ-

Σ+

+e

1189.4

8*10^-10

pπ0,nπ+

Σ-

Σ0

0

1192.5

小于10^-14

λ,辐射

Σ+

Σ-

-e

1197.3

1.5*10^-10

nπ-

Σ+

Ξ-

-e

1321.2

1.7*10^-10

λπ-

Ξ+

Ξ0

0

1314.7

3*10^-10

λπ0

Ξ0

介子

π+

+e

139.6

2.6*10^-8

μ+vμ

π-

π-

-e

139.6

2.6*10^-8

μ-vμ

π+

π0

0

135.0

10^-6

辐射

π0

K+

+e

493.8

1.2*10^-8

μ+vμ,π+π0

K-

K-

-e

493.8

1.2*10^-8

μ-vμ,π-π0

K+

K0

0

497.8

8.6*10^-11

π+π-,2π0

K0

(快衰变方式)

5.4*10^-8

3π0,π+π-π0

(慢衰变方式)

π+μv-μ,π+ev-,π-μ+vμ-,π-e+v

K0(反粒子)

0

497.8

衰变方式与K0相同

——

K0

η

0

548.8

——

3π0,π0π+π-,π+π-,辐射

η

注:表中粒子的质量是按能量单位1MeV(兆电子伏)给出的。如果与日常单位比较1MeV相当于以1kW功率工作1.6*10^-16s.

【基本粒子物理学】研究比原子核更深层次的微观世界中物质的结构、性质,和在很高能量下这些物质相互转化及其产生原因和规律的物理学分支。又称高能物理学。其发展大致经历3个阶段。

第一阶段(1897~1937) 可追溯到1897年发现第一个基本粒子电子 。1932 年 J.查德威克在用a粒子轰击核的实验中发现了中子,随即人们认识到原子核是由质子和中子构成的,从而形成所有物质都是由基本的结构单元——质子、中子、电子构成的统一的世界图像。质子、中子、电子和A.爱因斯坦提出并被 R.A.密立根和 A.H.康普顿等人实验证实的光子、W.泡利假设存在的中微子(1956年最终被实验证实)以及P.A.M.狄拉克预言并被 C.D.安德森 1932 年在宇宙线中观察到的正电子都被认为是基本粒子或亚原子粒子。

在此阶段,理论上建立了量子力学,这是微观粒子运动普遍遵从的基本规律。在相对论量子力学的基础上,通过场的量子化初步建立量子场论,很好地解决了场的粒子性和描述粒子的产生、湮没等问题。随着原子核物理的发展,发现在相当于原子核大小的范围内除了引力相互作用电磁相互作用之外,还存在比电磁作用更强的强相互作用和介于电磁作用和引力作用之间的弱相互作用,前者是核子结合成核的核力,后者引起原子核的β衰变。对于核力的研究认识到核力是通过交换介子而产生的,并根据核力的电荷无关性建立起同位旋概念。

第二阶段(1937~1964) 先后陆续发现了众多的粒子。1937年从宇宙线中发现μ子,后来证实它不参与强作用,它和与之相伴的μ中微子同电子及与之相伴的电子中微子可归入一类 ,统称为轻子 。1947年发现π±介子 , 1950年发现π0介子 , 1947 年还发现奇异粒子。50年代粒子加速器和各种粒子探测器有了很大发展,从而开始了用加速器研究并大量发现基本粒子的新时期,各种粒子的反粒子被证实;发现了为数不少的寿命极短的共振态。基本粒子的大量发现,其中大部分是强子,人们怀疑这些基本粒子的基本性。人们尝试将强子进行分类,提出颇为成功的强子分类的“八重法”。

这一阶段理论上最重要的进展是重正化理论的建立和相互作用中对称性的研究。关于描述电磁场量子化的量子电动力学,通过重正化方法消除了发散困难,对于电子和μ子反常磁矩以及兰姆移位的理论计算与实验结果精确符合。量子电动力学经受众多实验检验,成为描述电磁相互作用的成功的基本理论。对称性与守恒定律联系在一起,关于相互作用中对称性的研究,最为重要的结果是1956年李政道、杨振宁提出弱作用下宇称不守恒,1957年被吴健雄等人的实验及其他实验证实,这些实验同时也证实了在弱作用下电荷共轭宇称不守恒。这些研究推动弱作用理论的进展。

第三阶段(1964~ ) 以提出强子 结构的夸克模型为标志。1964 年 M.盖耳曼和 G.兹韦克在强子分类八重法的基础上分别提出强子由夸克构成,夸克共有上夸克u、下夸克d和奇异夸克s三种,它们的电荷 、重子数为分数。夸克模型可以说明当时已发现的各种强子。夸克模型得到后来进行的高能电子、高能中微子对质子和中子的深度非弹性散射实验的支持,实验显示出质子和中子内部存在点状结构,这些点状结构可以认为是夸克存在的证据 。1974年发现J/ψ粒子,其独特性质必须引入一种新的粲夸克c ,1979年发现另外一种独特的新粒子Υ,必须引入第5种夸克,称为底夸克b。另一方面,1975年发现重轻子τ,并有迹象表明存在与τ相伴的τ中微子,于是轻子共有6种 。迄今的实验尚未发现轻子有内部结构。人们相信轻子是与夸克属于同一层次的粒子 。轻子与夸克的对称性意味着存在第6种顶夸克t 。 1994年4月26日,美国费米国家实验室宣布已找到顶夸克存在的证据。

这一阶段理论上最重要的进展是建立电弱统一理论和强相互作用研究的进展 。 1961 年S.L.格拉肖提出电磁作用和弱作用的统一模型 ,其基础是杨振宁和 R.L.密耳斯于1954年提出的非阿贝耳规范理论。按照这一模型,光子是传递电磁作用的粒子,传递弱作用的粒子是W±和Z0 粒子, 但是W±、Z0是否具有静质量,理论上如何重正化问题没有解决。1967~1968年在对称性自发破缺的基础上 , S.温伯格、A.萨拉姆发展了格拉肖的电弱统一模型,建立了电弱统一的完善理论,阐明了规范场粒子W±、Z0是可以有静质量的,理论预言它们的质量在80~100吉电子伏特( GeV ) ,此外还预言存在弱中性流。1973年观察到弱中性流,1983 年发现W± 、 Z0粒子,其质量(mW≈80GeV,mZ≈90GeV )及特性同理论上期待的完全相符。关于强作用的研究 ,1973年 G.霍夫特、D.J.格罗斯等人发展了量子色动力学理论。量子色动力学与量子电动力学一样,也是一种定域规范理论。在这个理论中,夸克之间的强相互作用是由于夸克具有色荷交换色胶子而产生的,胶子没有静质量,但带有色荷。强相互作用具有渐近自由的性质,即夸克之间的强相互作用并不是随着它们的距离增大而减弱,而是相反;当它们相距很近而处于强子内部时,相互作用很弱,可近似地看成是自由的,从而能够说明夸克 、胶子的禁闭性质、轻子对强子深度非弹性散射的异常现象以及喷注现象等。

在粒子物理学的深层次探索活动中,粒子加速器、探测手段、数据记录和处理以及计算技术的应用不断发展,既带来粒子物理本身的进展,也促进整个科学技术的发展;粒子物理所取得的丰硕成果已经在宇宙演化的研究中起着重要的作用。

二、同名电影

【基本资料】

中文片名

基本粒子

外文片名

Elementarteilchen

更多外文片名

Atomised .....UK

Elementarpartiklarna .....Sweden

Elementary Particles .....USA (festival title)

Particules élémentaires, Les .....France

Temel parçaciklar .....Turkey (Turkish title)

影片类型

爱情 / 剧情

片长

105 分钟

国家/地区

德国

对白语言

英语 德语

色彩

彩色

幅面

35毫米遮幅宽银幕系统

级别

Hong Kong:III Netherlands:12 UK:15 Sweden:11 Germany:12

制作成本

�,000,000 (estimated)

【演职员表】导演 Director

奥斯卡·罗勒 Oskar Roehler

编剧 Writer

米歇尔·乌埃勒贝克 Michel Houellebecq .....novel

奥斯卡·罗勒 Oskar Roehler

演员 Actor

莫里兹·布雷多Moritz Bleibtreu .....Bruno

弗兰卡·波坦特Franka Potente .....Annabelle

马蒂娜·戈黛特 Martina Gedeck .....Christiane

克里斯蒂安·乌蒙 Christian Ulmen .....Michael

尼娜·霍斯 Nina Hoss .....Jane

Uwe Ochsenknecht .....Brunos Vater

科琳娜·哈弗奇 Corinna Harfouch .....Dr. Schäfer

Ulrike Kriener .....Annabelles Mutter

Jasmin Tabatabai .....Yogini

Michael Gwisdek .....Professor Fleißer

Herbert Knaup .....Sollers

Tom Schilling .....Michael jung

Nina Kronjäger .....Katja

Hermann Beyer .....Annabelles Vater

Simon Boer .....Janes Lover

Tigan Ceesay .....Ben

Rüdiger Klink .....Uwe

Eva-Maria Kurz .....Hippieweib

Tyra Misoux .....Kellnerin Swinger Club

Annett Renneberg .....Schwester Klara

Birgit Stein .....Anne

Jennifer Ulrich .....Johanna

Deborah Kaufmann .....Hannelore

Thorsten Merten .....Hubert

Shaun Lawton .....Walser

Katharina Palm .....Schwester Clara

Franziska Schlattner .....Ellen

Jelena Weber .....Annabelle - jung

Ingeborg Westphal .....Alte Hippiefrau

Thomas Drechsel .....Bruno (jung)

Simon Newby .....Hammet

Susanne Kreckel .....Kate

Dieter Bach .....Kates Lover

Ursula Karusseit .....Großmutter

Reiner Heise .....Forscher 1

Christian Schmidt .....Forscher 2

Manfred Möck .....Forscher 3

Thomas Huber .....Forscher 4

Bernd Stempel .....Mann Plattenbausieldung

Joachim Kretzer .....Christoffersen

Hussi Kutlucan .....Italiener

威尔弗莱德·霍赫霍丁格 Wilfried Hochholdinger .....Krankenhausarzt

Dietmar Mössmer .....Totengräber

Simon Licht .....Kursleiter

Uwe Dag Berlin .....Arzt Annabelle

Michel Ackermann

Bernd Blode .....Wandlungsfreak

Jan Both .....Patient Notaufnahme

Aron Eloy .....Reisender

Walter Hötte .....Strandbesucher

Rüdiger Kühmstedt .....Wandlungsfreak

Robert Mansfeld .....Swinger

Michael .....Swingerclub-Kerl (as Michael Zühlke)

Miroslav Scholtyssek .....Schüler Klassenzimmer

Ulrich Wohlleben .....Geschäftsreisender

Angelika Sperling .....Strandbesucherin (uncredited)

制作人 Produced by

Oliver Berben .....producer

Bernd Eichinger .....producer

David Groenewold .....co-producer

Tatjana Jakovleski

Bernhard Thür .....line producer

原创音乐 Original Music

Martin Todsharow

摄影 Cinematography

Carl-Friedrich Koschnick

剪辑 Film Editing

Peter R. Adam

选角导演 Casting

An Dorthe Braker

艺术指导 Production Designer

Ingrid Henn

服装设计 Costume Design by

Esther Walz

副导演/助理导演 Assistant Director

Christian Hoyer .....first assistant director

【制作发行】制作公司

Medienfonds GFP [德国]

发行公司

第一出版(香港)有限公司 First Distributors (H.K.) Ltd. [香港] ..... (2006) (Hong Kong) (all media)

Cinemien [荷兰] ..... (2006) (Netherlands) (theatrical)

康斯坦丁影业公司 Constantin Film [德国] ..... (2006) (Germany) (theatrical)

Hollywood Classic Entertainment [捷克] ..... (2006) (Czech Republic) (theatrical)

Lucky Red [意大利] ..... (2006) (Italy) (theatrical)

Momentum Pictures [英国] ..... (2006) (UK) (all media)

Rialto Film AG [瑞士] ..... (2006) (Switzerland) (theatrical)

TFM Distribution [法国] ..... (2006) (France) (theatrical)

其它公司

Medienboard Berlin-Brandenburg [德国] ..... funding

上映日期

德国

Germany

2006年2月12日 ..... (Berlin International Film Festival) (premiere)

德国

Germany

2006年2月23日

奥地利

Austria

2006年2月24日

意大利

Italy

2006年3月31日

瑞士

Switzerland

2006年4月6日 ..... (German speaking region)

意大利

Italy

2006年4月21日

罗马尼亚

Romania

2006年6月7日 ..... (Transilvania International Film Festival)

英国

UK

2006年7月7日 ..... (Cambridge Film Festival)

英国

UK

2006年7月14日

瑞士

Switzerland

2006年8月30日 ..... (French speaking region)

法国

France

2006年8月30日

比利时

Belgium

2006年9月13日

荷兰

Netherlands

2006年9月18日 ..... (Film by the Sea Film Festival)

荷兰

Netherlands

2006年10月5日

西班牙

Spain

2006年10月6日

加拿大

Canada

2006年10月7日 ..... (Vancouver International Film Festival)

瑞典

Sweden

2006年10月13日

斯洛文尼亚

Slovenia

2006年10月26日

捷克

Czech Republic

2006年11月9日

波兰

Poland

2006年11月24日

爱沙尼亚

Estonia

2006年12月8日 ..... (Tallinn Black Nights Film Festival)

日本

Japan

2007年3月24日

匈牙利

Hungary

2007年4月12日

土耳其

Turkey

2007年5月4日

【剧情简介】迈克尔和布鲁诺是一对同母异父的兄弟,因为他们的母亲曾是60年代性解放的信奉者,于是母亲的放浪形骸对兄弟俩的性格也造成了深重影响,而迈克尔与布鲁诺完全相悖。迈克尔是一位分子生物学家,专注于基因实验,对女人视若不见。布鲁诺是一位外表迷人的学校教师,却沉浸于迷乱的欲求之中,甚至对15岁大的女学生都不肯放过,爱情隔绝于他的身心之外。

布鲁诺的玩世不恭事出有因,年少时他曾同母亲有过不伦之恋,一只猫咪目睹了两人的交欢并破坏了布鲁诺的高潮快感,布鲁诺一气之下竟残忍的杀死了猫咪。此后的他一直在风尘女子的躯体上寻求满足,直到邂逅了克里斯蒂娜,即使两人以性开始,但布鲁诺还是感知到爱的存在。

同时,迈克尔也遇到了自己童年的梦中情人安娜贝尔,并且两人顺理成章的开始相恋。然而世事难料,怀孕后的安娜贝尔因患有重病,必须堕胎并切除子宫;而克里斯蒂娜也因突发骨病而双腿瘫痪,布鲁诺虽然不离不弃,可仍无法阻止克里斯蒂娜离开人世,深受打击的布鲁诺精神崩溃,只能在疯人院中了却余生……

【幕后制作】系出名门

影片根据法国作家米歇尔·乌埃勒贝克1998年的同名畅销小说改编,可以说,米歇尔·乌埃勒贝克是当今法国文坛在世界最具影响的文学名家,他的作品早已成为出版社竞相争抢的摇钱树,而其囊括的奖项更是不胜枚举。

米歇尔·乌埃勒贝克于1958年2月26日出生在留尼汪岛,父亲是高山向导,母亲是麻醉师。6岁时,他被交给祖母抚养,身为共产主义者的祖母给他取了化名似的名字“米歇尔”。年幼时,米歇尔就具有超越年龄的思考和判断力,同学们称他为“爱因斯坦”。

17岁的米歇尔考入高等农业学校,1980年,他拿到了农机工程师的学位,并结婚成家。可随着儿子的出生和漫长失业生涯的延续,他的婚姻也画上了句号,沉重的打击甚至让他住进了精神病院。

米歇尔的文学之路从20岁时拉开序幕,他开始写诗,1985年,他遇到了《新法兰西文学评论》的主编米歇尔·布尔多,第一次发表了自己的诗歌,并和布尔多结下了深厚的友情。1991年,米歇尔出版了关于美国恐怖小说家洛夫克拉夫特的传记,14年后,英文版面世,史蒂芬·金为此书作序。

米歇尔曾进入国民议会大厦任行政秘书,但很快离开。1992年,他出版了第一本诗集,获Tristan Tzara奖。1994年,他推出了自己的小说处女作《Extension du domaine de la lutte》,1999年,这本小说被搬上大银幕。1996年,他的第二本诗集获得了法国最重要的文学奖--花神奖。两年后,他的作品合集再获国家文学新秀大奖,第二本小说《基本粒子》被译成25种文字出版,并获Novembre奖。此后,米歇尔前往爱尔兰和西班牙继续创作,2005年的《La possibilité d'une île》成为联盟奖的得主。

德国全明星阵容

本片导演奥斯卡·罗勒从影不过10余年,但他的作品虽大多名不见经传,却很受各种大小电影节的关注。1997年的《Silvester Countdown》在慕尼黑电影节获奖;2000年的《无家可归》(Unberührbare,Die)又分别在乌拉圭、鹿特丹、迈阿密和伊斯坦布尔等电影节连连夺奖;2003年的《焦虑》获柏林电影节金熊奖提名;2004年的《求爱三兄弟》(Agnes und seine Brüder)在巴伐利亚电影节摘走最佳剧本奖。他出身文学家庭,年轻时辗转于伦敦、罗马和纽伦堡,曾从事记者、编剧和小说作家,他与众不同的影片风格与其文学底蕴和剧本特色密不可分。

《基本粒子》获今年柏林电影节银熊奖,扮演布鲁诺的德国演员莫里茨·布莱特鲁继2001年以《死亡实验》称雄德国影坛之后,终于成为国际影帝。而扮演安娜贝尔的正是同他一起主演《罗拉快跑》的弗兰卡·波坦特。

在制片人中,伯恩德·伊辛格位居首席,他的成功作品包括《神奇四侠》、《生化危机》和《帝国陷落》等。

【幕后花絮】·对于这部充满沉重内涵的黑色小说,导演奥斯卡·罗勒用了3年时间才完成剧本改编。

·莫里茨·布莱特鲁最初不想接受布鲁诺的角色,因为与他在《求爱三兄弟》中的角色过于相近,但最终,只有布鲁诺最适合莫里茨。

·在同米歇尔·乌埃勒贝克会面之前,一直是其经纪人负责同影片制片人进行磋商,时间长达1年半之久。

【影片评价】一句话评论

米歇尔·乌埃勒贝克的小说本来不适合拍成电影,但德国导演奥斯卡·罗勒的努力让人称道。

《基本粒子》改编自法国作家米歇尔·乌艾尔贝克的同名畅销小说,影片主角是一对同父异母的兄弟米歇尔和布鲁诺,他们的性格和命运都截然不同:分子生物学家米歇尔出于对人类世界和社会现实的失望,研究和创造了人类无性繁殖的理论,导致了现有人类的灭亡和新人类的诞生,而放浪形骸的浪子布鲁诺作为70年代性解放潮流的代表,最后进了精神病院。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有