(a+b)(a-b)=a^2-b^2
两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式。
说明当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差,即a^2-b^ 2=(a+b)(a-b)
两数的和与这两数的差的积,就是它们的平方差。
[逆推导平方差公式]
a^2-b^2
=a^2-b^2+(ab-ab)
=(a^2-ab)+(ab-b^2)
=a(a-b)+b(a-b)
=(a+b)(a-b)
公式运用[解方程]
x^2-y^2=1991
[思路分析]
利用平方差公式求解
[解题过程]
x^2-y^2=1991
(x+y)(x-y)=1991
因为1991可以分成1×1991,11×181
所以如果x+y=1991,x-y=1,解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同时也可以是负数
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
常见错误完全平方公式中常见错误有:①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)②混淆公式;③运算结果中符号错误;④变式应用难以掌握。