定义一门新兴的边缘学科。利用现代电子计算机的大存储量和快速计算的有利条件,将物理学、力学、天文学和工程中复杂的多囚素相互作用过程,通过计算机来模拟。如原子弹的爆炸、火箭的发射,以及代替风洞进行高速飞行的模拟试验等。应用计算物理学的力一法,还可研究恒星,特别是太阳的演化过程.
发展由于计算方法的深入发展和过去几十年中高速计算机的出现和普及,随着物理学基础理论的进一步突破,物理学家们逐步可以应用一些更严格和更全面的复杂模型,来定量研究实际的复杂体系的物理性质。基于物理学基本原理的数值计算和模拟已经成为将理论物理和实验物理紧密联系在一起的一座重要桥梁:它不仅能够弥补简单的解析理论模型难以完全描述复杂物理现象的不足,而且可以克服实验物理中遇到的许多困难,例如直接模拟实验上不能实现或技术条件要求很高、实验代价昂贵的物理系统等。计算机模拟技术已经渗透到物理学的各个领域,包括凝聚态物理、核物理、粒子物理、天体物理等,导致了计算物理这一新学科的突破性发展和成熟。从20世纪40年代开始,计算物理学家们已经发展了大量新数值方法(如Monte Carlo方法、分子动力学方法、快速Fourier变换等),由此发现了很多未曾预料到的新现象,并给理论和实验物理学提出了许多新问题。总之,计算物理已成为物理学家揭示多层次复杂体系的物理规律的重要手段,同时也广泛应用于处理实验结果和提出物理解释。对一个成功的物理学家来说,掌握必要的计算物理学知识和手段已变得越来越重要。越来越多的大学已针对将要从事物理学及相关学科研究的研究生和
本科生开设了计算物理课程。
课程计算物理学是综合大学研究生物理各专业的一门基础课.学计算物理学的目的:(1)是使学生系统地掌握物理模型和数学模型的建立方法和数值计算方法的选取原则;(2)是使学生获得分析和处理一些物理问题的基本方法和解决问题的能力,提高逻辑推理和插象思维的能力,为独立解决科学研究中的实际问题打下必要的数学物理基础.
在教学过程中,使用启发式教学,尽量多介绍与该课程相关的前沿科技动态,充分调动和发挥学生的主动性和创新性;提倡学生自学,培养学生的的自学能力.