分享
 
 
 

牛顿-莱布尼兹公式

王朝百科·作者佚名  2010-03-06
窄屏简体版  字體: |||超大  

牛顿(Newton)-莱布尼茨(Leibniz)公式

牛顿-莱布尼茨公式,又称为微积分基本定理,其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。从几何上看,它在切线和面积两个看似很不相关的概念之间建立起了联系。下面就是该公式的证明全过程:

我们知道,对黎曼(Riemann)可积函数f(x)于区间[a,b]上的定积分表达为:

b(上限)∫a(下限)f(x)dx

现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:

Φ(x)= x(上限)∫a(下限)f(x)dx

但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。虽然这种写法是可以的,但习惯上常把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:

Φ(x)= x(上限)∫a(下限)f(t)dt

接下来我们就来研究这个函数Φ(x)的性质:

命题1:定义函数Φ(x)= x(上限)∫a(下限)f(t)dt,则Φ(x)连续。当f(x)连续时,有Φ’(x)=f(x)。

证明:让函数Φ(x)获得增量Δx,则对应的函数增量

ΔΦ=Φ(x+Δx)-Φ(x)=x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt,

利用区间可加性,x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=x+Δx(上限)∫x(下限)f(t)dt

若m和M分别是f(x)在区间[a,b]上的最小值和最大值,利用定积分第一中值定理,存在[m,M]中的实数η,使得

ΔΦ=x+Δx(上限)∫x(下限)f(t)dt=η•Δx。

进一步,当f(x)连续时存在x与x+Δx之间的常数ξ,使得η=f(ξ)。

于是当Δx趋向于0时,ΔΦ趋向于0,即Φ(x)连续。

若f(x)连续,那么当Δx趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有lim Δx→0 ΔΦ/Δx=f(x),从而得出Φ’(x)=f(x)。

命题2:若f(x)在[a,b]上连续,且F(x)是f(x)在[a,b]上的一个原函数,那么b(上限)∫a(下限)f(x)dx=F(b)-F(a)。

证明:我们已证得Φ’(x)=f(x),故Φ(x)+C=F(x)。

注意到Φ(a)=0(积分区间变为[a,a],故面积为0),所以F(a)=C,

于是有Φ(x)=F(x)-F(a),当x=b时,Φ(b)=F(b)-F(a),这就得到了牛顿-莱布尼茨公式。

注意:

1) 上述命题2中f(x)的连续性可以削弱为f(x)在[a,b]上Riemann可积,这个结论也称为微积分第二基本定理,证明则相对复杂一些,需要从Riemann积分的定义出发来完成。

2) f(x)是Riemann可积的不能保证f(x)的原函数F(x)存在,即不一定存在F(x)使得F'(x)=f(x),例子是Riemann函数。

3) F(x)在(a,b)处处有有界导数不能保证F'(x)在[a,b]Riemann可积,例子是Volterra函数。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有