在《调谐LINUX网络性能之调试工具篇》和《调谐LINUX网络性能之网络配置文件详解》两篇文章中,我们介绍了route、netstat、tcpdump三种网络调谐测试工具的使用方法及其可实现的功能和网络配置文件的内容,本文我们将从实战的角度介绍网络性能调谐的方法。
下面,我们先来介绍网络性能调谐的第一种方法:服务方式选择。
服务方式选择
网络服务器由于要同时为多个客户提供服务,就必须使用某种方式来支持这种多任务的服务方式。一般情况下可以有三种方式来选择,多进程方式、多线程方式及异步方式。其中,多进程方式中服务器对一个客户要使用一个进程来提供服务,由于在操作系统中,生成一个进程需要进程内存复制等额外的开销,这样在客户较多时的性能就会降低。为了克服这种生成进程的额外开销,可以使用多线程方式或异步方式。在多线程方式中,使用进程中的多个线程提供服务,由于线程的开销较小,性能就会提高。事实上,不需要任何额外开销的方式还是异步方式,它使用非阻塞的方式与每个客户通信,服务器使用一个进程进行轮询就行了。异步方式下,多个任务之间的调度是由服务器程序自身来完成的,而且一旦一个地方出现问题则整个服务器就会出现问题,不在讨论的范围内。增大系统线程的数量:限制线程的数量的因素很多,主要有进程数量的限制,内存大小的限制,mutex/semaphore/shm/ipc的限制;一般情况下先增大进程最大数,再扩充内存,在增大线程最大数,而增大线程最大数的方法很简单,只需改变glibc中两处即可:线程最大数和线程堆栈区的大小;线程最大数的增加是以进程的异步I/O性能下为代价;所以需要加以平衡。
络配置文件中有用的内容
1. 对于数据库而言,增大共享内存段和信号量的多少,对数据传输效率的提高起到很重要的作用;
方法:只需编辑文件linux/include/linux/sem.h和linux/include/asm-i386/shmparam.h即可。
2. 先增大进程最大数,再扩充内存,再增大线程最大数,而增大线程最大数的方法很简单,只需改变glibc中两处即可:线程最大数和线程堆栈区的大小;
3. 把"/etc/inittab"文件中的一行注释掉可以禁止用Control-Alt-Delete关闭计算机。如果服务器不是放在一个安全的地方,这非常重要。
编辑inittab文件(vi /etc/inittab)把这一行:
ca::ctrlaltdel:/sbin/shutdown -t3 -r now
改为:
#ca::ctrlaltdel:/sbin/shutdown -t3 -r now
用下面的命令使改变生效:
[root@deep]# /sbin/init q
4. /etc/host.conf 文件指定如何解析主机名。Linux通过解析器库来获得主机名对应的IP地址。下面是一个"/etc/host.conf"的示例:
order bind,hosts :指定主机名查询顺序,这里规定先使用DNS来解析域名,然后再查询"/etc/hosts"文件(也可以相反)。
可以在该文件后加上以下两句:
multi on:指定的主机可以有多个地址,拥有多个IP地址的主机一般称为多穴主机。
ospoof on:指不允许对该服务器进行IP地址欺骗,以提高服务器的安全性。IP欺骗是一种攻击系统安全的手段,通过把IP地址伪装成别的计算机,来取得其它计算机的信任。
可调谐的Linux内核网络参数
ICMP相关内核配置参数
概述:通常我们使用icmp包来探测目的主机上的其它协议(如tcp和udp)是否可用。比如包含"destination unreachable"信息的icmp包就是最常见的icmp包。
(1) icmp_destunreach_rate:设置内容为"Destination Unreachable"icmp包的响应速率。设置值应为整数。
应用实例: 假设有A、B两部主机,首先我们在主机A上执行以下ipchains语句:
ipchains -A input -p icmp -j REJECT
这里的REJECT和DENY不同,DENY会丢掉符合条件的包如同没有接收到该包一样,而REJECT会在丢掉该包的同时给请求主机发回一个"Destination Unreachable"的icmp。
然后在主机B上ping主机A,这时候我们会发现"Destination Unreachable"icmp包的响应速度是很及时的。接着我们在主机A上执行:
echo "1000" > /proc/sys/net/ipv4/icmp_destunreach_rate
也即每10秒钟响应一个"Destination Unreachable"的icmp包。
这时候再从主机B上ping主机A就会发现"Destination Unreachable"icmp包的响应速度已经明显变慢,我很好奇的测试了一下,发现刚好是每10秒响应一次。
(2)icmp_echo_ignore_broadcasts:设置是否响应icmp echo请求广播,设置值应为布尔值,0表示响应icmp echo请求广播,1表示忽略。
注意:windows系统是不响应icmp echo请求广播的。
应用实例:
在我的RedHat6.x和RedHat7上该值缺省为0,这样当有个用户ping我的服务器所在的网段的网络地址时,所有的linux服务器就会响应,从而也能让让该用户得到我的服务器的ip地址,可以执行
echo "1" > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
来关闭该功能。从而防止icmp风暴,防止网络阻塞。
(3)icmp_echoreply_rate:设置系统响应icmp echo请求的icmp包的响应速度,设置值为整数。
应用实例:
假设有A、B两部主机,首先我们在主机B上ping主机A,可以看到响应很正常,然后在主机A上执行
echo "1000" > /proc/sys/net/ipv4/icmp_echoreply_rate
也即每10秒钟响应一个icmp echo请求包。然后再ping主机A就可以看到响应速度已经变成10秒一次。
最好合理的调整该参数的值来防止icmp风暴。
(4)icmp_echo_ignore_all:设置系统是否忽略所有的icmp echo请求,如果设置了一个非0值,系统将忽略所有的icmp echo请求。其实这是icmp_echoreply_rate的一种极端情况。参数值为布尔值,1:表示忽略,0:表示响应。
(5)icmp_paramprob_rate:当系统接收到数据报的损坏的ip或tcp头时,就会向源发出一个包含有该错误信息的icmp包。这个参数就是用来设置向源发送这种icmp包的速度。当然,在通常情况下ip或tcp头出错是很少见的。参数值为整数。
(6) icmp_timeexceed_rate:数据报在网络上传输时,其生存时间(time to live)字段会不断减少,当生存时间为0时,正在处理该数据报的路由器就会丢弃该数据报,同时给源主机发送一个"time to live exceeded"的icmp包。该参数就是用来设置这种icmp包的发送的速度。当然,这通常用于充当路由器的linux主机。
IP相关内核配置参数
linux内核网络参数中关于ip的配置参数通常是用来定义或调整ip包的一些特定的参数,除此之外还定义了系统的一些网络特性。
(1) ip_default_ttl:设置从本机发出的ip包的生存时间,参数值为整数,范围为0~128,缺省值为64。在windows系统中,ip包的生存时间通常为128。如果你的系统经常得到"Time to live exceeded"的icmp回应,可以适当增大该参数的值,但是也不能过大,因为如果你的路由坏路的话,就会增加系统报错的时间。
(2) ip_dynaddr:该参数通常用于使用拨号连接的情况,可以使系统能够立即改变ip包的源地址为该ip地址,同时中断原有的tcp对话而用新地址重新发出一个syn请求包,开始新的tcp对话。在使用ip欺骗时,该参数可以立即改变伪装地址为新的ip地址。该参数的参数值可以是:
1:启用该功能
2:使用冗余模式启用该功能
0:禁止该功能
应用实例:在使用ipchains配置ip欺骗带动局域网共享一个ppp连接上网时,有时会出现刚开时连接一个站点连不通,再次刷新又可以连接的情况,这时候就可以设置该参数的值为1,从而立即改变伪装地址为新的ip地址,就可以解决这类问题。命令为:
echo "1" > /proc/sys/net/ipv4/ip_dynaddr
(3)ip_forward:可以通过该参数来启用包转发功能,从而使系统充当路由器。参数值为1时启用ip转发,为0时禁止ip转发。注意,我们可以在单网卡或双网卡的主机上实现ip转发。
应用实例:
假设我们使用一部装有双网卡的linux主机充当防火墙,这时候我们就必须执行以下命令来打开ip转发功能:
echo "1" > /proc/sys/net/ipv4/ip_forward
(4) ip_local_port_range:设置当本地系统向外发起tcp或udp连接请求时使用的端口范围。设置值为两个整数,缺省为"1024 4999"。
应用实例:
echo "1450 6000" > /proc/sys/net/ipv4/ip_local_port_range
tcp相关内核配置参数
通过tcp配置参数可以控制tcp会话过程中的各个方面。
(1) tcp_fin_timeout:在一个tcp会话过程中,在会话结束时,A首先向B发送一个fin包,在获得B的ack确认包后,A就进入FIN WAIT2状态等待B的fin包然后给B发ack确认包。这个参数就是用来设置A进入FIN WAIT2状态等待对方fin包的超时时间。如果时间到了仍未收到对方的fin包就主动释放该会话。参数值为整数,单位为秒,缺省为180秒。
(2) tcp_syn_retires:设置开始建立一个tcp会话时,重试发送syn连接请求包的次数。 参数值为小于255的整数,缺省值为10。假如你的连接速度很快,可以考虑降低该值来提高系统响应时间,即便对连接速度很慢的用户,缺省值的设定也足够大了。
(3) tcp_window_scaling:设置tcp/ip会话的滑动窗口大小是否可变。参数值为布尔值,为1时表示可变,为0时表示不可变。Tcp/ip 通常使用的窗口最大可达到65535字节,对于高速网络,该值可能太小,这时候如果启用了该功能,可以使tcp/ip滑动窗口大小增大数个数量级,从而提高数据传输的能力。
针对每一网络接口的内核网络参数
通过针对每一网络接口的内核网络参数,你可以为诸如eth0、eth1等具体的网络接口指定响应的内核网络参数。注意:/proc/sys/net/ipv4/conf/all/下的参数将应用于所有的网络接口。
(1) accept_redirects:该参数位于/proc/sys/net/ipv4/conf/DEV/accept_redirects(DEV表示具体的网络接口),如果你的主机所在的网段中有两个路由器,你将其中一个设置成了缺省网关,但是该网关在收到你的ip包时发现该ip包必须经过另外一个路由器,这时这个路由器就会给你发一个所谓的"重定向"icmp包,告诉将ip包转发到另外一个路由器。参数值为布尔值,1表示接收这类重定向icmp 信息,0表示忽略。在充当路由器的linux主机上缺省值为0,在一般的linux主机上缺省值为1。建议将其改为0,或者使用"安全重定向"(见下文)以消除安全性隐患。
(2) log_martians:将包含非法地址信息的ip包记录到内核日志。参数值为布尔值。
应用实例:
上面我们讲过rp_filter反向路径过滤参数,同时我们可以执行下面的语句
echo "1" > /proc/sys/net/ipv4/conf/all/log_martians
然后就可以将进行ip假冒的ip包记录到/var/log/messages。
(3) forwarding:启用特定网络接口的ip转发功能。参数值为布尔值,1表示进行记录。
应用实例:
echo "1" > /proc/sys/net/ipv4/conf/eth0/forwarding
(4) accept_source_route:是否接受含有源路由信息的ip包。参数值为布尔值,1表示接受,0表示不接受。在充当网关的linux主机上缺省值为1,在一般的linux主机上缺省值为0。从安全性角度出发,建议你关闭该功能。
(5) secure_redirects:前面我们已经提到过"安全重定向"的概念,其实所谓的"安全重定向"就是只接受来自网关的"重定向"icmp包。该参数就是用来设置"安全重定向"功能的。参数值为布尔值,1表示启用,0表示禁止,缺省值为启用。
(6) proxy_arp:设置是否对网络上的arp包进行中继。参数值为布尔值,1表示中继,0表示忽略,缺省值为0。该参数通常只对充当路由器的linux主机有用。
改变有关系统缺省参数限制
1. _SHM_ID_BITS:在/usr/src/linux/include/asm/shmparam.h文件中定义了该值;
作用:定义共享内存段表识的数量;其缺省值为7,变化范围:1-128;
调谐:可将该值增大到9,需重新编译内核;
2. MSGMNI:/proc/sys/kernel/msgmni文件中定义了该值;
作用:该值定义了消息队列的最大长度;要使db2(7.1版)正常运行,其最小值为128;
对于高负荷的DB2服务器,可将该值调整为 >= 1024;
调谐:对于2.4.6版本的内核,其缺省值为16;可用以下三中方法改变该值
(1) bash# sysctl -w kernel.msgmni=128
(2) bash# sysctl -w kernel.msgmni=128
(3) 如果要在系统启动时改变该值,可在/etc/sysctl.conf文件中加入以下几句:
# Sets maximum number of message queues to 128
# Set this to 1024 or higher on production systems
kernel.msgmni = 128
(用ipcs -l 命令来查看当前ipc 参数的各种设置)
3. NR_TASKS:/usr/src/linux/include/linux/tasks.h文件中定义了该
MAX_TASKS_PER_USER被定义为NR_TASKS/2;linux 将DB2的每个实例看作用户,每个连结一般都使用一个进程,而每个实例的最大连结数被限制为NR_TASKS/2;尽管2.4的内核对该值无限制,但有linux该缺省值仍为512;
调谐:>= 1024, 重新编译内核;
4. SEMMNI:/usr/src/linux/include/linux/sem.h 文件中定义了该值;
作用:该值定义了linux所能支持的最大信号量表识;
调谐:其缺省值为128,增大到1024;
从IPV4过渡到IPV6
尽管IPv6比IPv4具有明显的先进性,要想在短时间内将Internet和各个企业网络中的所有系统全部从IPv4升级到 IPv6是不可能的。为此,做为IPv6研究工作的一个部分,IETF制定了推动IPv4向IPv6过渡的方案,其中包括三个机制:兼容IPv4的 IPv6地址、双IP协议栈和基于IPv4通道的IPv6。
兼容IPv4的IPv6地址是一种特殊的IPv6单点广播地址,一个 IPv6节点与一个IPv4节点可以使用这种地址在IPv4网络中通信。这种地址是由96个0位加上32位IPv4地址组成的,例如,假设某节点的 IPv4地址是192.56.1.1,那么兼容IPv4的IPv6地址就是:
0: 0:0:0:0:0:C038:101。
双 IP协议栈是在一个系统(如一个主机或一个路由器)中同时使用IPv4和IPv6两个协议栈。这类系统既拥有IPv4地址,也拥有IPv6地址,因而可以收发IPv4和IPv6两种IP数据报。也就是用两套,需要使用IPv4的时候就使用IPv4,需要使用IPv6的时候就使用IPv6。
与双IP协议栈相比,基于IPv4通道的IPv6是一种更为复杂的技术,它是将整个IPv6数据报封装在IPv4数据报中,由此实现在当前的IPv4网络(如Internet)中IPv6节点与IPv4节点之间的IP通信。基于IPv4通道的IPv6实现过程分为三个步骤:封装、解封和通道管理。封装,是指由通道起始点创建一个IPv4包头,将IPv6数据报装入一个新的IPv4数据报中。解封,是指由通道终结点移去IPv4包头,还原原始的IPv6数据报。通道管理,是指由通道起始点维护通道的配置信息。IPv4通道有四种方案:路由器对路由器、主机对路由器、主机对主机、路由器对主机。
当进行通信的两个主机都有兼容IPv4的IPv6地址时,数据发送方主机将建立一个主机对主机通道。通道起始点(数据发送方主机)确定数据接收方主机就是通道终结点,并自动从其兼容IPv4的IPv6地址中抽取后32个地址位以确定通道终结点的IPv4地址,这种类型的通道被称为自动通道(automated tunneling)。
双IP协议栈和基于IPv4通道的IPv6网络使IPv4网络能够以可控的速度向 IPv6迁移。在开始向IPv6过渡之前,必须设置一个同时支持IPv4和IPv6的新的DNS服务器。有关设置或关于IPv6更多的详细内容可访问 IPv6相关网站。我们在这里仅为在Linux下使用IPV6提供一种简单的理论叙述。
小结
至此,我们已经详细介绍了Linux系统的网络性能调谐方面的内容,包括网络调谐测试工具的使用方法及其可实现的功能,网络配置文件解析,网络性能调谐方法等。您对这系列文章有什么想法,请直接在下面留言。如果您对网络调谐技术有更好的见解,欢迎您来稿。来稿请寄huangxf@staff.ccidnet.com
[返回列表]