我曾看过一些有关A*算法的程序,不过写得比较简洁、易懂的还是风云写的A*算法教学实例(风云工作室),但是这个算法并没有进行优化,该程序要用到实际应用中,还会有一定的限制,所以我对该算法进行了改进,并加上更详细的算法说明,使其具有更好的教学作用和实用价值。开始前我先给出A*算法的基本思路:
问题:求出2D的迷宫中起始点S到目标点E的最短路径?
算法: findpath()
{
把S点加入树根(各点所在的树的高度表示从S点到该点所走过的步数);
把S点加入排序队列(按该点到E点的距离排序+走过的步数从小到大排序);
1、排序队列sort_queue中距离最小的第一个点出列,并保存入store_queue中
2、从出列的点出发,分别向4个(或8个)方向中的一个各走出一步
3、并估算第2步所走到位置到目标点的距离,并把该位置加入树,
最后把该点按距离从小到大排序后并放入队列中。(由trytile函数实现)。
4、如果该点从四个方向上都不能移动,则把该点从store_queue中删除
5、回到第一点,直到找到E点则结束
从目标点回溯树,直到树根则可以找到最佳路径,并保存在path[]中
}
/*========================================================================
精简的A*算法 作者:添翼虎
网址:http://tyhweb.163.net Email:tyhweb@163.net
本程序参考了风云的最短路径代码(http://member.nease.com/~cloudwu),
并加以改进和优化:
1、把原来用于存放已处理节点的堆栈改为(store_queue)队列,这样在从
sort_queue队列出列时可直接放入store_queue中。
2、解除了地图大小的限制(如果有64K内存限制时,地图大小只能是180x180)
3、删除了原程序中的一些冗余,见程序中的注释。
4、程序继续使用dis_map数组保存各点历史历史最佳距离,也包含了某点是否已经
经过的信息,虽然这样做可能会比使用链表多用一些内存,但是在搜索时可以
节省不时间。
5、程序更具有实用性,可直接或修改后运用于你的程序中,但请你使用该代码后
应该返回一些信息给我,如算法的改进或使用于什么程序等。
本程序可以用Borland C++或DJGPP编译,并附带有一个数据文件 map.dat,
保存有地图的数据,(注:该地图文件格式与风云的原代码的地图格式不一样)
-------------------------------------------------------------------------*/
//#define NDEBUG
#include <stdio.h
#include <conio.h
#include <assert.h
#include <stdlib.h
#define tile_num(x,y) ((y)*map_w+(x)) //将 x,y 坐标转换为地图上块的编号
#define tile_x(n) ((n)%map_w) //由块编号得出 x,y 坐标
#define tile_y(n) ((n)/map_w)
#define MAPMAXSIZE 180 //地图面积最大为 180x180,如果没有64K内存限制可以更大
#define MAXINT 32767
//树结构, 比较特殊, 是从叶节点向根节点反向链接,方便从叶节点找到根节点
typedef struct tree_node *TREE;
struct tree_node {
int h; //节点所在的高度,表示从起始点到该节点所有的步数
int tile; //该节点的位置
TREE father; //该节点的上一步
};
//链接结构,用于保存处理过的和没有处理过的结点
typedef struct link_node *LINK;
struct link_node {
TREE node;
int f;
LINK next;
};
LINK sort_queue; // 保存没有处理的行走方法的节点
LINK store_queue; // 保存已经处理过的节点 (搜索完后释放)
unsigned char * map; //地图数据
unsigned int * dis_map; //保存搜索路径时,中间目标地最优解
int map_w,map_h; //地图宽和高
int start_x,start_y,end_x,end_y; //地点,终点坐标
// 初始化队列
void init_queue()
{
sort_queue=(LINK)malloc(sizeof(*sort_queue));
sort_queue-node=NULL;
sort_queue-f=-1;
sort_queue-next=(LINK)malloc(sizeof(*sort_queue));
sort_queue-next-node=NULL;
sort_queue-next-f=MAXINT;
sort_queue-next-next=NULL;
store_queue=(LINK)malloc(sizeof(*store_queue));
store_queue-node=NULL;
store_queue-f=-1;
store_queue-next=NULL;
}
// 待处理节点入队列, 依靠对目的地估价距离插入排序
void enter_queue(TREE node,int f)
{
LINK p=sort_queue,father,q;
while(fp-f) {
father=p;
p=p-next;
assert(p);
}
q=(LINK)malloc(sizeof(*q));
assert(sort_queue);
q-f=f,q-node=node,q-next=p;
father-next=q;
}
// 将离目的地估计最近的方案出队列
TREE get_from_queue()
{
LINK bestchoice=sort_queue-next;
LINK next=sort_queue-next-next;
sort_queue-next=next;
bestchoice-next=store_queue-next;
store_queue-next=bestchoice;
return bestchoice-node;
}
// 释放栈顶节点
void pop_stack()
{
LINK s=store_queue-next;
assert(s);
store_queue-next=store_queue-next-next;
free(s-node);
free(s);
}
// 释放申请过的所有节点
void freetree()
{
int i;
LINK p;
while(store_queue){
p=store_queue;
free(p-node);
store_queue=store_queue-next;
free(p);
}
while (sort_queue) {
p=sort_queue;
free(p-node);
sort_queue=sort_queue-next;
free(p);
}
}
// 估价函数,估价 x,y 到目的地的距离,估计值必须保证比实际值小
int judge(int x,int y)
{
int distance;
distance=abs(end_x-x)+abs(end_y-y);
return distance;
}
// 尝试下一步移动到 x,y 可行否
int trytile(int x,int y,TREE father)
{
TREE p=father;
int h;
if (map[tile_num(x,y)]!=' ') return 1; // 如果 (x,y) 处是障碍,失败
//这一步用来判断(x,y)点是否已经加入队列,多余可以删除,因为dis_map已经
//保存该点是否已经保存
//while (p) {
// if (x==tile_x(p-tile) && y==tile_y(p-tile)) return 1; //如果 (x,y) 曾经经过,失败
// p=p-father;
//}
h=father-h+1;
if (h=dis_map[tile_num(x,y)]) return 1; // 如果曾经有更好的方案移动到 (x,y) 失败
dis_map[tile_num(x,y)]=h; // 记录这次到 (x,y) 的距离为历史最佳距离
// 将这步方案记入待处理队列
p=(TREE)malloc(sizeof(*p));
p-father=father;
p-h=father-h+1;
p-tile=tile_num(x,y);
enter_queue(p,p-h+judge(x,y));
return 0;
}
// 路径寻找主函数
int * findpath(void)
{
TREE root;
int i,j;
int * path;
memset(dis_map,0xff,map_h*map_w*sizeof(*dis_map)); //填充dis_map为0XFF,表示各点未曾经过
init_queue();
root=(TREE)malloc(sizeof(*root));
root-tile=tile_num(start_x,start_y);
root-h=0;
root-father=NULL;
enter_queue(root,judge(start_x,start_y));
for (;;) {
int x,y,child;
TREE p;
root=get_from_queue();
if (root==NULL) {
return NULL;
}
x=tile_x(root-tile);
y=tile_y(root-tile);
if (x==end_x && y==end_y) break; // 达到目的地成功返回
child=trytile(x,y-1,root); //尝试向上移动
child&=trytile(x,y+1,root); //尝试向下移动
child&=trytile(x-1,y,root); //尝试向左移动
child&=trytile(x+1,y,root); //尝试向右移动
//child&=trytile(x+1,y-1,root);//尝试向右上移动
//child&=trytile(x+1,y+1,root); //尝试向右下移动
//child&=trytile(x-1,y+1,root); //尝试向左下移动
//child&=trytile(x-1,y-1,root); //尝试向左上移动
if (child!=0)
pop_stack(); // 如果四个方向均不能移动,释放这个死节点
}
// 回溯树,将求出的最佳路径保存在 path[] 中
path=(int*)malloc((root-h+2)*sizeof(int));
assert(path);
for (i=0;root;i++) {
path[i]=root-tile;
root=root-father;
}
path[i]=-1;
freetree();
return path;
}
void printpath(int *path)
{
int i;
if(path==NULL) return ;
for (i=0;path[i]=0;i++) {
gotoxy(tile_x(path[i])+1,tile_y(path[i])+1);
cprintf(".");
}
}
int readmap()
{
FILE *f;
int i,j;
f=fopen("map.dat","r");
assert(f);
fscanf(f,"%d,%d\n",&map_w,&map_h);
map=malloc(map_w*map_h+1);
assert(map);
for(i=0;i<map_h;i++)