分享
 
 
 

深入浅出的分析windows进程中的内存结构

王朝system·作者佚名  2008-05-19
窄屏简体版  字體: |||超大  

接触过编程的人都知道,高级语言都能通过变量名来访问内存中的数据。那么这些变量在内存中是如何存放的呢?程序又是如何使用这些变量的呢?下面就会对此进行深入的讨论。下文中的C语言代码如没有特别声明,默认都使用VC编译的release版。

首先,来了解一下 C 语言的变量是如何在内存分部的。C 语言有全局变量(Global)、本地变量(Local),静态变量(Static)、寄存器变量(Regeister)。每种变量都有不同的分配方式。先来看下面这段代码:

#include < stdio.h

int g1=0, g2=0, g3=0;

int main()

{

static int s1=0, s2=0, s3=0;

int v1=0, v2=0, v3=0;

//打印出各个变量的内存地址

printf("0x%08x\n",&v1); //打印各本地变量的内存地址

printf("0x%08x\n",&v2);

printf("0x%08x\n\n",&v3);

printf("0x%08x\n",&g1); //打印各全局变量的内存地址

printf("0x%08x\n",&g2);

printf("0x%08x\n\n",&g3);

printf("0x%08x\n",&s1); //打印各静态变量的内存地址

printf("0x%08x\n",&s2);

printf("0x%08x\n\n",&s3);

return 0;

}

编译后的执行结果是:

0x0012ff78

0x0012ff7c

0x0012ff80

0x004068d0

0x004068d4

0x004068d8

0x004068dc

0x004068e0

0x004068e4

输出的结果就是变量的内存地址。其中v1,v2,v3是本地变量,g1,g2,g3是全局变量,s1,s2,s3是静态变量。你可以看到这些变量在内存是连续分布的,但是本地变量和全局变量分配的内存地址差了十万八千里,而全局变量和静态变量分配的内存是连续的。这是因为本地变量和全局/静态变量是分配在不同类型的内存区域中的结果。对于一个进程的内存空间而言,可以在逻辑上分成3个部份:代码区,静态数据区和动态数据区。动态数据区一般就是“堆栈”。“栈(stack)”和“堆(heap)”是两种不同的动态数据区,栈是一种线性结构,堆是一种链式结构。进程的每个线程都有私有的“栈”,所以每个线程虽然代码一样,但本地变量的数据都是互不干扰。一个堆栈可以通过“基地址”和“栈顶”地址来描述。全局变量和静态变量分配在静态数据区,本地变量分配在动态数据区,即堆栈中。程序通过堆栈的基地址和偏移量来访问本地变量。

├―――――――┤低端内存区域

│ …… │

├―――――――┤

│ 动态数据区 │

├―――――――┤

│ …… │

├―――――――┤

│ 代码区 │

├―――――――┤

│ 静态数据区 │

├―――――――┤

│ …… │

├―――――――┤高端内存区域

堆栈是一个先进后出的数据结构,栈顶地址总是小于等于栈的基地址。我们可以先了解一下函数调用的过程,以便对堆栈在程序中的作用有更深入的了解。不同的语言有不同的函数调用规定,这些因素有参数的压入规则和堆栈的平衡。windows API的调用规则和ANSI C的函数调用规则是不一样的,前者由被调函数调整堆栈,后者由调用者调整堆栈。两者通过“__stdcall”和“__cdecl”前缀区分。先看下面这段代码:

#include < stdio.h

void __stdcall func(int param1,int param2,int param3)

{

int var1=param1;

int var2=param2;

int var3=param3;

printf("0x%08x\n",¶m1); //打印出各个变量的内存地址

printf("0x%08x\n",¶m2);

printf("0x%08x\n\n",¶m3);

printf("0x%08x\n",&var1);

printf("0x%08x\n",&var2);

printf("0x%08x\n\n",&var3);

return;

}

int main()

{

func(1,2,3);

return 0;

}

编译后的执行结果是:

0x0012ff78

0x0012ff7c

0x0012ff80

0x0012ff68

0x0012ff6c

0x0012ff70

├―――――――┤< ―函数执行时的栈顶(ESP)、低端内存区域

│ …… │

├―――――――┤

│ var 1 │

├―――――――┤

│ var 2 │

├―――――――┤

│ var 3 │

├―――――――┤

│ RET │

├―――――――┤< ―“__cdecl”函数返回后的栈顶(ESP)

│ parameter 1 │

├―――――――┤

│ parameter 2 │

├―――――――┤

│ parameter 3 │

├―――――――┤< ―“__stdcall”函数返回后的栈顶(ESP)

│ …… │

├―――――――┤< ―栈底(基地址 EBP)、高端内存区域

上图就是函数调用过程中堆栈的样子了。首先,三个参数以从又到左的次序压入堆栈,先压“param3”,再压“param2”,最后压入“param1”;然后压入函数的返回地址(RET),接着跳转到函数地址接着执行(这里要补充一点,介绍UNIX下的缓冲溢出原理的文章中都提到在压入RET后,继续压入当前EBP,然后用当前ESP代替EBP。然而,有一篇介绍windows下函数调用的文章中说,在windows下的函数调用也有这一步骤,但根据我的实际调试,并未发现这一步,这还可以从param3和var1之间只有4字节的间隙这点看出来);第三步,将栈顶(ESP)减去一个数,为本地变量分配内存空间,上例中是减去12字节(ESP=ESP-3*4,每个int变量占用4个字节);接着就初始化本地变量的内存空间。由于“__stdcall”调用由被调函数调整堆栈,所以在函数返回前要恢复堆栈,先回收本地变量占用的内存(ESP=ESP+3*4),然后取出返回地址,填入EIP寄存器,回收先前压入参数占用的内存(ESP=ESP+3*4),继续执行调用者的代码。参见下列汇编代码:

;--------------func 函数的汇编代码-------------------

:00401000 83EC0C sub esp, 0000000C //创建本地变量的内存空间

:00401003 8B442410 mov eax, dword ptr [esp+10]

:00401007 8B4C2414 mov ecx, dword ptr [esp+14]

:0040100B 8B542418 mov edx, dword ptr [esp+18]

:0040100F 89442400 mov dword ptr [esp], eax

:00401013 8D442410 lea eax, dword ptr [esp+10]

:00401017 894C2404 mov dword ptr [esp+04], ecx

……………………(省略若干代码)

:00401075 83C43C add esp, 0000003C ;恢复堆栈,回收本地变量的内存空间

:00401078 C3 ret 000C ;函数返回,恢复参数占用的内存空间

;如果是“__cdecl”的话,这里是“ret”,堆栈将由调用者恢复

;-------------------函数结束-------------------------

;--------------主程序调用func函数的代码--------------

:00401080 6A03 push 00000003 //压入参数param3

:00401082 6A02 push 00000002 //压入参数param2

:00401084 6A01 push 00000001 //压入参数param1

:00401086 E875FFFFFF call 00401000 //调用func函数

;如果是“__cdecl”的话,将在这里恢复堆栈,“add esp, 0000000C”

代码:

#include < stdio.h

#include < string.h

void __stdcall func()

{

char lpBuff[8]="\0";

strcat(lpBuff,"AAAAAAAAAAA");

return;

}

int main()

{

func();

return 0;

}

编译后执行一下回怎么样?哈,“"0x00414141"指令引用的"0x00000000"内存。该内存不能为"read"。”,“非法操作”喽!"41"就是"A"的16进制的ASCII码了,那明显就是strcat这句出的问题了。"lpBuff"的大小只有8字节,算进结尾的'\0',那strcat最多只能写入7个"A",但程序实际写入了11个"A"外加1个'\0'。再来看看上面那幅图,多出来的4个字节正好覆盖了RET的所在的内存空间,导致函数返回到一个错误的内存地址,执行了错误的指令。如果能精心构造这个字符串,使它分成三部分,前一部份仅仅是填充的无意义数据以达到溢出的目的,接着是一个覆盖RET的数据,紧接着是一段shellcode,那只要着个RET地址能指向这段shellcode的第一个指令,那函数返回时就能执行shellcode了。但是软件的不同版本和不同的运行环境都可能影响这段shellcode在内存中的位置,那么要构造这个RET是十分困难的。一般都在RET和shellcode之间填充大量的NOP指令,使得exploit有更强的通用性。

├―――――――┤< ―低端内存区域

│ …… │

├―――――――┤< ―由exploit填入数据的开始

│ │

│ buffer │< ―填入无用的数据

│ │

├―――――――┤

│ RET │< ―指向shellcode,或NOP指令的范围

├―――――――┤

│ NOP │

│ …… │< ―填入的NOP指令,是RET可指向的范围

│ NOP │

├―――――――┤

│ │

│ shellcode │

│ │

├―――――――┤< ―由exploit填入数据的结束

│ …… │

├―――――――┤< ―高端内存区域

windows下的动态数据除了可存放在栈中,还可以存放在堆中。了解C++的朋友都知道,C++可以使用new关键字来动态分配内存。来看下面的C++代码:

#include < stdio.h

#include < iostream.h

#include < window

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有