分享
 
 
 

php下的RSA算法实现

王朝php·作者佚名  2006-01-31
窄屏简体版  字體: |||超大  

/*

* Implementation of the RSA algorithm

* (C) Copyright 2004 Edsko de Vries, Ireland

*

* Licensed under the GNU Public License (GPL)

*

* This implementation has been verified against [3]

* (tested Java/PHP interoperability).

*

* References:

* [1] "Applied Cryptography", Bruce Schneier, John Wiley & Sons, 1996

* [2] "Prime Number Hide-and-Seek", Brian Raiter, Muppetlabs (online)

* [3] "The Bouncy Castle Crypto Package", Legion of the Bouncy Castle,

* (open source cryptography library for Java, online)

* [4] "PKCS #1: RSA Encryption Standard", RSA Laboratories Technical Note,

* version 1.5, revised November 1, 1993

*/

/*

* Functions that are meant to be used by the user of this PHP module.

*

* Notes:

* - $key and $modulus should be numbers in (decimal) string format

* - $message is expected to be binary data

* - $keylength should be a multiple of 8, and should be in bits

* - For rsa_encrypt/rsa_sign, the length of $message should not exceed

* ($keylength / 8) - 11 (as mandated by [4]).

* - rsa_encrypt and rsa_sign will automatically add padding to the message.

* For rsa_encrypt, this padding will consist of random values; for rsa_sign,

* padding will consist of the appropriate number of 0xFF values (see [4])

* - rsa_decrypt and rsa_verify will automatically remove message padding.

* - Blocks for decoding (rsa_decrypt, rsa_verify) should be exactly

* ($keylength / 8) bytes long.

* - rsa_encrypt and rsa_verify expect a public key; rsa_decrypt and rsa_sign

* expect a private key.

*/

function rsa_encrypt($message, $public_key, $modulus, $keylength)

{

$padded = add_PKCS1_padding($message, true, $keylength / 8);

$number = binary_to_number($padded);

$encrypted = pow_mod($number, $public_key, $modulus);

$result = number_to_binary($encrypted, $keylength / 8);

return $result;

}

function rsa_decrypt($message, $private_key, $modulus, $keylength)

{

$number = binary_to_number($message);

$decrypted = pow_mod($number, $private_key, $modulus);

$result = number_to_binary($decrypted, $keylength / 8);

return remove_PKCS1_padding($result, $keylength / 8);

}

function rsa_sign($message, $private_key, $modulus, $keylength)

{

$padded = add_PKCS1_padding($message, false, $keylength / 8);

$number = binary_to_number($padded);

$signed = pow_mod($number, $private_key, $modulus);

$result = number_to_binary($signed, $keylength / 8);

return $result;

}

function rsa_verify($message, $public_key, $modulus, $keylength)

{

return rsa_decrypt($message, $public_key, $modulus, $keylength);

}

/*

* Some constants

*/

define("BCCOMP_LARGER", 1);

/*

* The actual implementation.

* Requires BCMath support in PHP (compile with --enable-bcmath)

*/

//--

// Calculate (p ^ q) mod r

//

// We need some trickery to [2]:

// (a) Avoid calculating (p ^ q) before (p ^ q) mod r, because for typical RSA

// applications, (p ^ q) is going to be _WAY_ too large.

// (I mean, __WAY__ too large - won't fit in your computer's memory.)

// (b) Still be reasonably efficient.

//

// We assume p, q and r are all positive, and that r is non-zero.

//

// Note that the more simple algorithm of multiplying $p by itself $q times, and

// applying "mod $r" at every step is also valid, but is O($q), whereas this

// algorithm is O(log $q). Big difference.

//

// As far as I can see, the algorithm I use is optimal; there is no redundancy

// in the calculation of the partial results.

//--

function pow_mod($p, $q, $r)

{

// Extract powers of 2 from $q

$factors = array();

$div = $q;

$power_of_two = 0;

while(bccomp($div, "0") == BCCOMP_LARGER)

{

$rem = bcmod($div, 2);

$div = bcdiv($div, 2);

if($rem) array_push($factors, $power_of_two);

$power_of_two++;

}

// Calculate partial results for each factor, using each partial result as a

// starting point for the next. This depends of the factors of two being

// generated in increasing order.

$partial_results = array();

$part_res = $p;

$idx = 0;

foreach($factors as $factor)

{

while($idx < $factor)

{

$part_res = bcpow($part_res, "2");

$part_res = bcmod($part_res, $r);

$idx++;

}

array_pus($partial_results, $part_res);

}

// Calculate final result

$result = "1";

foreach($partial_results as $part_res)

{

$result = bcmul($result, $part_res);

$result = bcmod($result, $r);

}

return $result;

}

//--

// Function to add padding to a decrypted string

// We need to know if this is a private or a public key operation [4]

//--

function add_PKCS1_padding($data, $isPublicKey, $blocksize)

{

$pad_length = $blocksize - 3 - strlen($data);

if($isPublicKey)

{

$block_type = "\x02";

$padding = "";

for($i = 0; $i < $pad_length; $i++)

{

$rnd = mt_rand(1, 255);

$padding .= chr($rnd);

}

}

else

{

$block_type = "\x01";

$padding = str_repeat("\xFF", $pad_length);

}

return "\x00" . $block_type . $padding . "\x00" . $data;

}

//--

// Remove padding from a decrypted string

// See [4] for more details.

//--

function remove_PKCS1_padding($data, $blocksize)

{

assert(strlen($data) == $blocksize);

$data = substr($data, 1);

// We cannot deal with block type 0

if($data{0} == '\0')

die("Block type 0 not implemented.");

// Then the block type must be 1 or 2

assert(($data{0} == "\x01") || ($data{0} == "\x02"));

// Remove the padding

$offset = strpos($data, "\0", 1);

return substr($data, $offset + 1);

}

//--

// Convert binary data to a decimal number

//--

function binary_to_number($data)

{

$base = "256";

$radix = "1";

$result = "0";

for($i = strlen($data) - 1; $i >= 0; $i--)

{

$digit = ord($data{$i});

$part_res = bcmul($digit, $radix);

$result = bcadd($result, $part_res);

$radix = bcmul($radix, $base);

}

return $result;

}

//--

// Convert a number back into binary form

//--

function number_to_binary($number, $blocksize)

{

$base = "256";

$result = "";

$div = $number;

while($div > 0)

{

$mod = bcmod($div, $base);

$div = bcdiv($div, $base);

$result = chr($mod) . $result;

}

return str_pad($result, $blocksize, "\x00", STR_PAD_LEFT);

}

?>

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有