文章分析了在 Linux 2.6 中引入的对 Intel CPU 快速系统调用指令 SYSENTER/SYSEXIT 支持的实现。Linux 驱动及内核开发者通过了解快速系统调用指令的机制,可以在自己的代码中通过利用这一机制,提高系统性能,并避开由快速系统调用方式带来的一些局限(如系统调用中嵌套系统调用)。
前言
在 Linux 2.4 内核中,用户态 Ring3 代码请求内核态 Ring0 代码完成某些功能是通过系统调用完成的,而系统调用的是通过软中断指令(int 0x80)实现的。在 x86 保护模式中,处理 INT 中断指令时,CPU 首先从中断描述表 IDT 取出对应的门描述符,判断门描述符的种类,然后检查门描述符的级别 DPL 和 INT 指令调用者的级别 CPL,当 CPL<=DPL 也就是说 INT 调用者级别高于描述符指定级别时,才能成功调用,最后再根据描述符的内容,进行压栈、跳转、权限级别提升。内核代码执行完毕之后,调用 IRET 指令返回,IRET 指令恢复用户栈,并跳转会低级别的代码。
其实,在发生系统调用,由 Ring3 进入 Ring0 的这个过程浪费了不少的 CPU 周期,例如,系统调用必然需要由 Ring3 进入 Ring0(由内核调用 INT 指令的方式除外,这多半属于 Hacker 的内核模块所为),权限提升之前和之后的级别是固定的,CPL 肯定是 3,而 INT 80 的 DPL 肯定也是 3,这样 CPU 检查门描述符的 DPL 和调用者的 CPL 就是完全没必要。正是由于如此,Intel x86 CPU 从 PII 300(Family 6,Model 3,Stepping 3)之后,开始支持新的系统调用指令 sysenter/sysexit。sysenter 指令用于由 Ring3 进入 Ring0,SYSEXIT 指令用于由 Ring0 返回 Ring3。由于没有特权级别检查的处理,也没有压栈的操作,所以执行速度比 INT n/IRET 快了不少。
不同系统调用方式的性能比较:
下面是一些来自互联网的有关sysenter/sysexit 指令和 INT n/IRET 指令在 Intel Pentium CPU 上的性能对比:
1:系统调用性能测试测试硬件:
Intel? Pentium? III CPU, 450 MHz Processor Family: 6 Model: 7 Stepping: 2
用户模式花费的时间
核心模式花费的时间
基于 sysenter/sysexit 指令的系统调用
9.833 microseconds
6.833 microseconds
基于中断 INT n 指令的系统调用
17.500 microseconds 7.000 microseconds
2:各种 CPU 上 INT 0x80 和 SYSENTER 执行速度的比较
CPU
Int0x80 sysenter
Athlon XP 1600+
277
169
800MHz mode 1 athlon
279
170
2.8GHz p4 northwood ht
1152
442
上述数据为对 100000 次 getppid() 系统调用所花费的 CPU 时钟周期取的平均值
自这种技术推出之后,人们一直在考虑在 Linux 中加入对这种指令的支持,在 Kernel.org 的邮件列表中,主题为 "Intel P6 vs P7 system call performance" 的大量邮件讨论了采用这种指令的必要性,邮件中列举的理由主要是 Intel 在 Pentium 4 的设计上存在问题,造成 Pentium 4 使用中断方式执行的系统调用比 Pentium 3 以及 AMD Athlon 所耗费的 CPU 时钟周期多上 5~10 倍。因此,在 Pentium 4 平台上,通过 sysenter/sysexit 指令来执行系统调用已经是刻不容缓的需求。
sysenter/sysexit 系统调用的机制:
在 Intel 的软件开发者手册第二、三卷(Vol.2B,Vol.3)中,4.8.7 节是关于 sysenter/sysexit 指令的详细描述。手册中说明,sysenter 指令可用于特权级 3 的用户代码调用特权级 0 的系统内核代码,而 SYSEXIT 指令则用于特权级 0 的系统代码返回用户空间中。sysenter 指令可以在 3,2,1 这三个特权级别调用(Linux 中只用到了特权级 3),而 SYSEXIT 指令只能从特权级 0 调用。
执行 sysenter 指令的系统必须满足两个条件:1.目标 Ring 0 代码段必须是平坦模式(Flat Mode)的 4GB 的可读可执行的非一致代码段。2.目标 RING0 堆栈段必须是平坦模式(Flat Mode)的 4GB 的可读可写向上扩展的栈段。
在 Intel 的手册中,还提到了 sysenter/sysexit 和 int n/iret 指令的一个区别,那就是 sysenter/sysexit 指令并不成对,sysenter 指令并不会把 SYSEXIT 所需的返回地址压栈,sysexit 返回的地址并不一定是 sysenter 指令的下一个指令地址。调用 sysenter/sysexit 指令地址的跳转是通过设置一组特殊寄存器实现的。这些寄存器包括:
SYSENTER_CS_MSR - 用于指定要执行的 Ring 0 代码的代码段选择符,由它还能得出目标 Ring 0 所用堆栈段的段选择符;
SYSENTER_EIP_MSR - 用于指定要执行的 Ring 0 代码的起始地址;
SYSENTER_ESP_MSR-用于指定要执行的Ring 0代码所使用的栈指针
这些寄存器可以通过 wrmsr 指令来设置,执行 wrmsr 指令时,通过寄存器 edx、eax 指定设置的值,edx 指定值的高 32 位,eax 指定值的低 32 位,在设置上述寄存器时,edx 都是 0,通过寄存器 ecx 指定填充的 MSR 寄存器,sysenter_CS_MSR、sysenter_ESP_MSR、sysenter_EIP_MSR 寄存器分别对应 0x174、0x175、0x176,需要注意的是,wrmsr 指令只能在 Ring 0 执行。
这里还要介绍一个特性,就是 Ring0、Ring3 的代码段描述符和堆栈段描述符在全局描述符表 GDT 中是顺序排列的,这样只需知道 SYSENTER_CS_MSR 中指定的 Ring0 的代码段描述符,就可以推算出 Ring0 的堆栈段描述符以及 Ring3 的代码段描述符和堆栈段描述符。
在 Ring3 的代码调用了 sysenter 指令之后,CPU 会做出如下的操作:
1.将 SYSENTER_CS_MSR 的值装载到 cs 寄存器
2.将 SYSENTER_EIP_MSR 的值装载到 eip 寄存器
3.将 SYSENTER_CS_MSR 的值加 8(Ring0 的堆栈段描述符)装载到 ss 寄存器。
4.将 SYSENTER_ESP_MSR 的值装载到 esp 寄存器
5.将特权级切换到 Ring0
6.如果 EFLAGS 寄存器的 VM 标志被置位,则清除该标志
7.开始执行指定的 Ring0 代码
在 Ring0 代码执行完毕,调用 SYSEXIT 指令退回 Ring3 时,CPU 会做出如下操作:
1.将 SYSENTER_CS_MSR 的值加 16(Ring3 的代码段描述符)装载到 cs 寄存器
2.将寄存器 edx 的值装载到 eip 寄存器
3.将 SYSENTER_CS_MSR 的值加 24(Ring3 的堆栈段描述符)装载到 ss 寄存器
4.将寄存器 ecx 的值装载到 esp 寄存器
5.将特权级切换到 Ring3
6.继续执行 Ring3 的代码
由此可知,在调用 SYSENTER 进入 Ring0 之前,一定需要通过 wrmsr 指令设置好 Ring0 代码的相关信息,在调用 SYSEXIT 之前,还要保证寄存器edx、ecx 的正确性。
如何得知 CPU 是否支持 sysenter/sysexit 指令
根据 Intel 的 CPU 手册,我们可以通过 CPUID 指令来查看 CPU 是否支持 sysenter/sysexit 指令,做法是将 EAX 寄存器赋值 1,调用 CPUID 指令,寄存器 edx 中第 11 位(这一位名称为 SEP)就表示是否支持。在调用 CPUID 指令之后,还需要查看 CPU 的 Family、Model、Stepping 属性来确认,因为据称 Pentium Pro 处理器会报告 SEP 但是却不支持 sysenter/sysexit 指令。只有 Family 大于等于 6,Model 大于等于 3,Stepping 大于等于 3 的时候,才能确认 CPU 支持 sysenter/sysexit 指令。
Linux 对 sysenter/sysexit 系统调用方式的支持
在 2.4 内核中,直到最近的发布的 2.4.26-rc2 版本,没有加入对 sysenter/sysexit 指令的支持。而对 sysenter/sysexit 指令的支持最早是2002 年,由 Linus Torvalds 编写并首次加入 2.5 版内核中的,经过多方测试和多次 patch,最终正式加入到了 2.6 版本的内核中。
http://kerneltrap.org/node/view/531/1996
http://lwn.net/Articles/18414/
具体谈到系统调用的完成,不能孤立的看内核的代码,我们知道,系统调用多被封装成库函数提供给应用程序调用,应用程序调用库函数后,由 glibc 库负责进入内核调用系统调用函数。在 2.4 内核加上老版的 glibc 的情况下,库函数所做的就是通过 int 指令来完成系统调用,而内核提供的系统调用接口很简单,只要在 IDT 中提供 INT 0x80 的入口,库就可以完成中断调用。
在 2.6 内核中,内核代码同时包含了对 int 0x80 中断方式和 sysenter 指令方式调用的支持,因此内核会给用户空间提供一段入口代码,内核启动时根据 CPU 类型,决定这段代码采取哪种系统调用方式。对于 glibc 来说,无需考虑系统调用方式,直接调用这段入口代码,即可完成系统调用。这样做还可以尽量减少对 glibc 的改动,在 glibc 的源码中,只需将 "int $0x80" 指令替换成 "call 入口地址" 即可。
下面,以 2.6.0 的内核代码配合支持 SYSENTER 调用方式的 glibc2.3.3 为例,分析一下系统调用的具体实现。
内核在启动时做的准备
前面说到的这段入口代码,根据调用方式分为两个文件,支持 sysenter 指令的代码包含在文件 arch/i386/kernel/vsyscall-sysenter.S 中,支持int中断的代码包含在arch/i386/kernel/vsyscall-int80.S中,入口名都是__kernel_vsyscall,这两个文件编译出的二进制代码由arch/i386/kernel/vsyscall.S所包含,并导出起始地址和结束地址。
2.6内核在启动的时候,调用了新增的函数sysenter_setup(参见arch/i386/kernel/sysenter.c),在这个函数中,内核将虚拟内存空间的顶端一个固定地址页面(从0xffffe000开始到0xffffeffff的4k大小)映射到一个空闲的物理内存页面。然后通过之前执行CPUID的指令得到的数据,检测CPU是否支持sysenter/sysexit指令。如果CPU不支持,那么将采用INT调用方式的入口代码拷贝到这个页面中,然后返回。相反,如果CPU支持SYSETER/SYSEXIT指令,则将采用SYSENTER调用方式的入口代码拷贝到这个页面中。使用宏on_each_cpu在每个CPU上执行enable_sep_cpu这个函数。
在enable_sep_cpu函数中,内核将当前CPU的TSS结构中的ss1设置为当前内核使用的代码段,esp1设置为该TSS结构中保留的一个256字节大小的堆栈。在X86中,TSS结构中ss1和esp1本来是用于保存Ring 1进程的堆栈段和堆栈指针的。由于内核在启动时,并不能预知调用sysenter指令进入Ring 0后esp的确切值,而应用程序又无权调用wrmsr指令动态设置,所以此时就借用esp1指向一个固定的缓冲区来填充这个MSR寄存器,由于Ring 1根本没被启用,所以并不会对系统造成任何影响。在下面的文章中会介绍进入Ring 0之后,内核如何修复ESP来指向正确的Ring 0堆栈。关于TSS结构更细节的应用可参考代码include/asm-i386/processor.h)。
然后,内核通过wrmsr(msr,val1,val2)宏调用wrmsr指令对当前CPU设置MSR寄存器,可以看出调用宏的第三个参数即edx都被设置为0。其中SYSENTER_CS_MSR的值被设置为当前内核用的所在代码段;SYSENTER_ESP_MSR被设置为esp1,即指向当前CPU的TSS结构中的堆栈;SYSENTER_EIP_MSR则被设置为内核中处理sysenter指令的接口函数sysenter_entry(参见arch/i386/kernel/entry.S)。这样,sysenter指令的准备工作就完成了。
通过内核在启动时进行这样的设置,在每个进程的进程空间中,都能访问到内核所映射的这个代码页面,当然这个页面对于应用程序来说是只读的。我们通过新版的ldd工具查看任意一个可执行程序,可以看到下面的结果:
[root@test]# file dynamic
dynamic: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
dynamically linked (uses shared libs), not stripped
[root@test]# ldd dynamic
linux-gate.so.1 =>
(0xffffe000)
libc.so.6 => /lib/tls/libc.so.6 (0x4002c000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
这个所谓的"linux-gate.so.1"的内容就是内核映射的代码,系统中其实并不存在这样一个链接库文件,它的名字是由ldd自己起的,而在老版本的ldd中,虽然能够检测到这段代码,但是由于没有命名而且在系统中找不到对应链接库文件,所以会有一些显示上的问题。有关这个问题的背景,可以参考下面这个网址:http://sources.redhat.com/ml/libc-alpha/2003-09/msg00263.html。