3、旋转失真问题
因为旋转公式含有三角函数,所以求出的旋转坐标取整后有可能插入到先前已插入的位置中,而没有插入到它本应该插入的位置。例如:计算出旋转坐标(3.1,4)取整后插入到(3,4)中;如果计算下个旋转坐标为(3.4,4),取整后又被插入到(3,4)中,因此覆盖了原来的像素点,而且(3.4,4)对应的像素点没有办法插入到它应该插入的位置,造成失真。
要解决这个问题,在不考虑牺牲额外资源的情况下,一般的方法是先将图像放大若干倍,然后再进行旋转,再等比例缩小。对于边界可考虑马赛克的处理方式或者用两行重描补偿误差的办法。
算法的应用与局限性
1、模拟浮点运算
上述算法是基于cldc1.1规范的,该规范提供了对浮点运算和三角函数运算的直接支持。为提高程序的通用性,我们希望算法能运行在cldc1.0设备上。
cldc1.0不支持任何非整形的数值,要实现三角函数的计算,我们可以考虑用已有的整型数来模拟浮点数:把一个整数分成两个域,分别存放浮点的整数和小数部分,这并不难,但要模拟通用的数学函数,如正弦、余弦、二次方根、指数运算等就不那么容易了,需要花费不少时间。由于一些现有的库已经能够很好地完成这些工作,一般情况下,我们可以直接拿来用。
这里我们选用Onne Hommes编写的MathFP库,该库提供了基于整形int和长整形long的不同精度的实现,有简单、健壮、速度快的特点。看下面使用该库的示例代码:
int xFP = MathFP.toFP(“0.10”);
int yFP = MathFP.toFP(“0.2”);
int zFP = MathFP.mul(xFP , yFP);
System.out.PRintln( MathFP.toString( zFP ) ); //0.02
前两行构造了两个定点数0.10和0.2,第三行计算他们的乘积,并根据这个值构造定点数zFP,最后一行把zFP的值输出。
这些定点值xFP,yFP,zFP不是真正意义上的整型值,虽然它们用整型值来存储数据。使用这些定点值时必须调用相应的MathFP方法。
别的可以选用的浮点运算库有JMFP、FPLib、shiftFP等。
2、使用预置的三角函数表
三角函数的计算一般比较慢,为提高运行速度,我们可以对数值进行预计算,比如提前计算出360?以内角度的正弦和余弦值,把结果存储在一个静态数组中,如下面代码。
static int[] lookupCosFP = new int[360];
static int[] lookupSinFP = new int[360];
long radianFP ; //用于存放角度的弧度值
for(int i = 0; i<360; i++ ) {
//将角度转化为弧度,使用MathFP库
radianFP=MathFP.div(MathFP.mul(MathFP.toFP(i),MathFP.PI),MathFP.toFP(180)) ;
lookupCosFP = MathFP.cos(radianFP); //存入数组
lookupSinFP = MathFP.sin(radianFP);
}
这样使用时,从数组中直接值就行了。事实上,根据三角函数的特点,我们只需预计算存储0-90度的正弦函数值,便可以导出任意角度的正弦、余弦值。读者可以编写一个单独的方法实现之。 由于移动设备的屏幕通常比较小,做高精度的三角函数运算的意义不大,所以一般采取近似模拟的办法。(1)对有浮点支持/第三方库支持的情况,不去存放每个角度的三角函数值,每隔5?存一个值。(2) 对于没有浮点支持和第三方浮点库支持的情况,在表中存放角度的三角函数值乘以某个较大数(如4096)取整后的值,在实际计算之后,再等比例缩小(除以4096)。这两种方法在实际中都有不少应用。
3、Sprite中的图像旋转
Sprite,即精灵,是在游戏中代表角色的类,它管理所有的图像帧来实现各种动画效果,在游戏开发中有着广泛的应用。如果需要表现动画效果,那用Sprite是再合适不过的了。MIDP2.0中,提供了专门的这样一个类,在构造时只需把图像对象作为参数传递。Sprite类自身提供了图像反射和成90度整数倍旋转的功能。如果要实现任意角度旋转,本质上跟上面的Image的旋转没有分别,只是在Sprite中内置了精灵的位置等信息,管理起来会更加方便高效。
读者可以参考上面Image的实现,方便写出基于Sprite的旋转实现。需注意的是,Sprite一次只能取一帧图像,因此需要首先把该帧从图像集中提取出来。图五展示了“淘金者”游戏中,精灵类“钩子”的逆时针方向0到60?的旋转效果图。
图五 钩子的旋转效果
4、局限性
(1)该算法的使用过程中生成了较大的图像,比较适合于图像绕固定点连续旋转情况。如果实际中图像只需做一次旋转,或旋转点经常变换,这种方法会产生较大的无效区域,增加处理的负担,此时,旋转后图像的大小最好根据旋转点和角度做最优化计算。
(2)算法需要获得图像的象素信息,这在midp2.0才给予支持,如果要在midp1.0的机器上实现图像旋转,须借助于设备厂商专用开发包,如Nokia开发包就提供了DirectUtils类实现类似上面createRGBImage()的功能。当然这只能在相应设备上才能用。
(3)算法要求设备支持Alpha通道,否则不能正常的表现效果。
(4)基于该方法的Sprite对象在做碰撞检测时,须采用象素检测的方法。
其余方案
1、预置图像
预置图像就是把所需要的各个角度的图像预先存储起来,然后按需直接调用的方法。这种方法不需要我们在程序中做像素级的操作,所以使用起来较简单。缺点是当要存储的图像类别和角度很大时,会增加不少存储开销。
当所需要的各角度的图像为偶数个且在0-360?范围内均匀分布时,借助于MIDP2.0的Sprite类提供的顺时针旋转90?、180?、270?度的功能,我们可以在一定程度上降低这种开销。比如在坦克大战游戏中,假如一辆坦克需要一周范围内均匀分布的12个不同的方向,则需预置12副图像。借助于该方法,只需要提供三张图片就够了(见图六),当它们分别旋转90?、180?和270?后就得到了完整的12个方向,节省了3/4的存储开销。
图六 预置图像
2、使用TinyLine 2D
这是一个用于高性能图形绘制的j2me开发包。它面向程序员,定义了一组紧凑的2d图形对象集,扩展了j2me在移动设备上的图形表现能力。它提供了基于CLDC 1.0 纯java语言的实现,很小巧,整个库不足35k,能够很方便地集成到应用程序当中去。需要说明的是,该库不但支持图形,对一般意义上的光栅图像也支持,通过它也能实现旋转等的操作。
结论
J2ME作为移动信息设备上的开发应用程序的开放平台,获得了众多厂商的支持,和越来越广泛的使用。本文从数学的基础出发,提出了实现图像按任意角度旋转的一种方案并给出了基于J2ME/MIDP平台的实现,给出了局限性分析,最后引出了实现图像旋转的另外两种参考性方法。其实方法并没有好劣之分,只有适合不适合之说,在实际应用中,我们应根据具体的需求,选择最合适的方案。希望本文能给读者在J2ME开发中需要用到图像旋转的功能时提供有益的参考 (出处:http://www.knowsky.com)