短距离无线通信技术的范围很广,在一般意义上,只要通信收发双方通过无线电波传输信息,并且传输距离限制在较短的范围内,通常是几十米以内,就可以称为短距离无线通信。
短距离无线通信技术的特征
低成本、低功耗和对等通信,是短距离无线通信技术的三个重要特征和优势。
首先,低成本是短距离无线通信的客观要求,因为各种通信终端的产销量都很大,要提供终端间的直通能力,没有足够低的成本是很难推广的。
其次,低功耗是相对其它无线通信技术而言的一个特点,这与其通信距离短这个先天特点密切相关,由于传播距离近,碰到障碍物的几率也小,发射功率普遍都很低,通常在1毫瓦量级。
最后,对等通信是短距离无线通信的重要特征,有别于基于网络基础设施的无线通信技术。终端之间对等通信,无须网络设备进行中转,因此空中接口设计和高层协议都相对比较简单,无线资源的治理通常采用竞争的方式如载波侦听。
主流的短距离无线通信技术
目前几种主流的短距离无线通信技术包括:高速WPAN技术;UWB高速无线通信技术,包括MB-OFDM、DS-UWB;WirelessUSB技术,WirelessUSB是一个全新无线传输标准,可提供简单、可靠的低成本无线解决方案,帮助用户实现无线功能。此外,还有低速WPAN技术和IEEE802.15.4\Zigbee,Zigbee是一种低速短距离无线通信技术。它的出发点是希望发展一种拓展性强、易建的低成本无线网络,强调低耗电、双向传输和感应功能等特色。ZigbeePHY和MAC层由IEEE802.15.4标准定义。IEEE802.15.4a是作为IEEE802.15.4的一个补充,其物理层的标准可能采用低速UWB技术。蓝牙底层PHY层和MAC层协议的标准版本为IEEE802.15.1,大多数标准的制订工作还是由蓝牙小组SIG负责。RFID是一种非接触的自动识别技术,其基本原理是利用射频信号和空间耦合电感或电磁耦合传输特性实现对被识别物体的自动识别。RFID技术的发展得益于多项技术的综合发展,包括芯片技术、天线技术、无线技术、电磁传播技术、数据交换与编码技术等。一套典型的RFID系统由电子标签、读写器和信息处理系统组成。电子标签与读写器配合完成对被识别对象的信息采集功能;信息处理系统则根据需求承担相应的信息控制和处理工作。
短距离无线通信的应用发展情况
高速WPAN,目前主要应用于连接下一代便携式消费电器和通信设备。它支持各种高速率的多媒体应用、高质量声像配送、多兆字节音乐和图像文档传送等。
低速WPAN,主要用于家庭、工厂与仓库的自动化控制,安全监视、保健监视、环境监视,军事行动、消防队员操作指挥,货单自动更新、库存实时跟踪以及游戏和互动式玩具等方面的低速应用。
根据工作频率的不同,RFID系统大体分为中低频段和高频段两类,典型的工作频率为135kHz以下、13.56MHz、433MHz、860MHz~960MHz、2.45GHz和5.8GHz等。不同频率RFID系统的工作距离不同,应用的领域也有差异。低频段的RFID技术主要应用于动物识别、工厂数据自动采集系统等领域;13.56MHz的RFID技术已相对成熟,并且大部分以IC卡的形式广泛应用于智能交通、门禁、防伪等多个领域,工作距离小于1m.较高频段的433MHzRFID技术则被美国国防部用于物流托盘追踪治理;而在RFID技术中,当前研究和推广的重点是高频段的860MHz~960MHz的远距离电子标签,有效工作距离达到3~6m,适用于对物流、供给链的环节进行治理;2.45GHz和5.8GHzRFID技术以有源电子标签的形式应用在集装箱治理、公路收费等领域。