本文对java规则引擎与其API(JSR-94)及相关实现做了较具体的介绍,对其体系结构和API应用有较详尽的描述,并指出Java规则引擎,规则语言,JSR-94的相互关系,以及JSR-94的不足之处和展望
复杂企业级项目的开发以及其中随外部条件不断变化的业务规则(business logic),迫切需要分离商业决策者的商业决策逻辑和应用开发者的技术决策,并把这些商业决策放在中心数据库或其他统一的地方,让它们能在运行时(即商务时间)可以动态地治理和修改从而提供软件系统的柔性和适应性。规则引擎正是应用于上述动态环境中的一种解决方法。
本文第一部分简要介绍了规则引擎的产生背景和基于规则的专家系统,第二部分介绍了什么是规则引擎及其架构和算法,第三部分介绍了商业产品和开源项目实现等各种Java规则引擎,第四部分对Java规则引擎API(JSR-94)作了具体介绍,讲解了其体系结构,治理API和运行时API及相关安全问题,第五部分则对规则语言及其标准化作了探讨,第六部分给出了一个使用Java规则引擎API的简单示例,第七部分给予小结和展望。
1、 介绍
1.1 规则引擎产生背景
企业治理者对企业级IT系统的开发有着如下的要求:(1)为提高效率,治理流程必须自动化,即使现代商业规则异常复杂(2)市场要求业务规则经常变化,IT系统必须依据业务规则的变化快速、低成本的更新(3)为了快速、低成本的更新,业务人员应能直接治理IT系统中的规则,不需要程序开发人员参与。
而项目开发人员则碰到了以下问题:(1)程序=算法+数据结构,有些复杂的商业规则很难推导出算法和抽象出数据模型(2)软件工程要求从需求->设计->编码,然而业务规则经常在需求阶段可能还没有明确,在设计和编码后还在变化,业务规则往往嵌在系统各处代码中(3)对程序员来说,系统已经维护、更新困难,更不可能让业务人员来治理。
基于规则的专家系统的出现给开发人员以解决问题的契机。规则引擎由基于规则的专家系统中的推理引擎发展而来。下面简要介绍一下基于规则的专家系统。
1.2 基于规则的专家系统(RBES)
专家系统是人工智能的一个分支,它模拟人类的推理方式,使用试探性的方法进行推理,并使用人类能理解的术语解释和证实它的推理结论。专家系统有很多分类:神经网络、基于案例推理和基于规则系统等。
RBES包括三部分:Rule Base(knowledge base)、Working Memory(fact base)和Inference Engine(推理引擎)。它们的结构如下所示:
图1.基于规则的专家系统组成
如上图所示,推理引擎包括三部分:Pattern Matcher、Agenda和Execution Engine。Pattern Matcher何时执行哪个规则;Agenda治理PatternMatcher挑选出来的规则的执行次序;Execution Engine负责执行规则和其他动作。
推理引擎通过决定哪些规则满足事实或目标,并授予规则优先级,满足事实或目标的规则被加入议程。存在两者推理方式:演绎法(Forward-Chaining正向链)和归纳法(Backward-Chaining反向链)。演绎法从一个初始的事实出发,不断地应用规则得出结论(或执行指定的动作)。而归纳法则是从假设出发,不断地寻找符合假设的事实。
2、 规则引擎
2.1 业务规则
一个业务规则包含一组条件和在此条件下执行的操作,它们表示业务规则应用程序的一段业务逻辑。业务规则通常应该由业务分析人员和策略治理者开发和修改,但有些复杂的业务规则也可以由技术人员使用面向对象的技术语言或脚本来定制。业务规则的理论基础是:设置一个或多个条件,当满足这些条件时会触发一个或多个操作。
2.2 规则引擎
什么是规则引擎?规则引擎是如何执行规则的?这可以称之为"什么"与"如何"的问题。到底规则引擎是什么还是目前业界一个比较有争议的问题,在JSR-94种也几乎没有定义。可以这样认为充分定义和解决了"如何"的问题,"什么"问题本质上也迎刃而解。也许这又是一种"先有蛋还是先有鸡"哲学争论。今后标准规则语言的定义和推出及相关标准的制定应该可以给这样的问题和争论划上一个句号。本文中,暂且这样述说什么是规则引擎:规则引擎由推理引擎发展而来,是一种嵌入在应用程序中的组件,实现了将业务决策从应用程序代码中分离出来,并使用预定义的语义模块编写业务决策。接受数据输入,解释业务规则,并根据规则做出业务决策。