分享
 
 
 

C#:消息队列应用程序

王朝c#·作者佚名  2006-01-08
窄屏简体版  字體: |||超大  

Carl Nolan

Microsoft Corporation

摘要:本文概述一种用于处理若干消息队列的 Windows 服务解决方案,重点介绍 .NET 框架和 C# 应用程序。

下载 CSharpMessageService.exe 示例文件 (86 KB)

目录

简介

.NET 框架应用程序

应用程序结构

服务类

检测设备

安装

总结

参考资料

简介

Microsoft 近期推出了一种用于生成集成应用程序的新平台——Microsoft .NET 框架。.NET 框架允许开发人员使用任何编程语言迅速生成和部署 Web 服务和应用程序。Microsoft Intermediate Language (MSIL) 和实时 (JIT) 编译器使这种不依赖语言的框架得以实现。

与 .NET 框架同时面世的还有一种新的编程语言 C#(读作“C sharp”)。C# 是一种简单、新颖、面向对象和类型安全的编程语言。利用 .NET 框架和 C#(除 Microsoft® Visual Basic® 和 Managed C++ 之外),用户可以编写功能强大的 Microsoft Windows® 和 Web 应用程序及服务。本文提供了这样的一个解决方案,它的重点是 .NET 框架和 C# 而不是编程语言。C# 语言的介绍可以在“ C# 简介和概述(英文)”找到。

近期的文章“MSMQ:可伸缩、高可用性的负载平衡解决方案(英文)”介绍了一种解决方案,用于高可用性消息队列 (MSMQ) 的可伸缩负载平衡解决方案体系结构。此解决方案中涉及了一种将 Windows 服务用作智能消息路由器的开发方案。这样的解决方案以前只有 Microsoft Visual C++® 程序员才能实现,而 .NET 框架的出现改变了这种情况。从下面的解决方案中,您可以看到这一点。

.NET 框架应用程序

这里介绍的解决方案是一种用来处理若干消息队列的 Windows 服务;其中每个队列都是由多个线程进行处理(接收和处理消息)。处理程序使用循环法技术或应用程序特定值(消息 AppSpecific 属性)从目的队列列表中路由消息,并使用消息属性来调用组件方法。(示例进程也属于这种情况。)在后一种情况下,组件的要求是它能够实现给定的接口 IWebMessage。要处理错误,应用程序需要将不能处理的消息发送到错误队列中。

消息应用程序的结构与以前的活动模板库 (ATL) 应用程序相似,它们之间的主要不同在于用于管理服务的代码的封装和 .NET 框架组件的使用。要创建 Windows 服务,.NET 框架用户仅仅需要创建一个从 ServiceBase(来自 System.ServiceControl 程序集)继承的类。这毫不奇怪,因为 .NET 框架是面向对象的。

应用程序结构

应用程序中主要的类是 ServiceControl,它是从 ServiceBase 继承的。因而,它必须实现 OnStart 和 OnStop 方法,以及可选的 OnPause 和 OnContinue 方法。事实上,类是在静态方法 Main 内构造的:

using System;

using System.ServiceProcess;

public class ServiceControl: ServiceBase

{

// 创建服务对象的主入口点

public static void Main()

{

ServiceBase.Run(new ServiceControl());

}

// 定义服务参数的构造对象

public ServiceControl()

{

CanPauseAndContinue = true;

ServiceName = "MSDNMessageService";

AutoLog = false;

}

protected override void OnStart(string[] args) {...}

protected override void OnStop() {...}

protected override void OnPause() {...}

protected override void OnContinue() {...}

}

ServiceControl 类创建一系列 CWorker 对象,即,为需要处理的每个消息队列创建 CWorker 类的一个实例。根据定义中处理队列所需的线程数目,CWorker 类依次创建了一系列的 CWorkerThread 对象。CWorkerThread 类创建的一个处理线程将执行实际的服务工作。

使用 CWorker 和 CWorkerThread 类的主要目的是确认服务控件 Start、Stop、Pause 和 Continue 命令。因为这些进程必须是无阻塞的,命令操作最终将在后台处理线程上执行。

CWorkerThread 是一个抽象类,被 CWorkerThreadAppSpecific 、CWorkerThreadRoundRobin 和 CWorkerThreadAssembly 继承。这些类以不同的方式处理消息。前两个类通过给另一队列发送消息来处理消息(其不同之处在于确定接收队列路径的方式),最后一个类则使用消息属性来调用组件方法。

.NET 框架内部的错误处理是以基类 Exception 为基础的。当系统引发或捕获错误时,这些错误必须是从 Exception 中导出的类。CWorkerThreadException 类就是这样一种实现,它通过附加额外属性(用于定义服务是否应继续运行)来扩展基类。

最后,应用程序包含两种结构。这些值类型定义了辅助进程或线程的运行时参数,以简化 CWorker 和 CWorkerThread 对象的结构。使用值类型结构(而不是引用类型类)能够确保这些运行时参数维护的是数值(而不是引用)。

IWebMessage 接口

CWorkerThread 的实现之一是一个调用组件方法的类。这个名为 CWorkerThreadAssembly 的类使用 IWebMessage 接口来定义服务和组件之间的约定。

与当前版本的 Microsoft Visual Studio® 不同,C# 接口可以在任何语言中显式定义,而不需要创建和编译 IDL 文件。C# IWebMessage 接口的定义如下:

public interface IWebMessage

{

WebMessageReturn Process(string sMessageLabel, string sMessageBody, int

iAppSpecific);

void Release();

}

ATL 代码中的 Process 方法是为处理消息而指定的。Process 方法的返回代码定义为枚举类型 WebMessageReturn:

public enum WebMessageReturn

{

ReturnGood,

ReturnBad,

ReturnAbort

}

枚举的定义如下:Good 表示继续处理,Bad 表示将消息写入错误队列,Abort 表示终止处理。Release 方法为服务提供了轻松清除类实例的途径。因为仅在垃圾回收的过程中才调用类实例的析构函数,所以确保所有占用昂贵资源(例如数据库连接)的类都有一个能够在析构之前被调用的方法,用来释放这些资源,这是一种非常好的构思。

名称空间

在这里先简单介绍一下名称空间。名称空间允许在内部和外部表示中将应用程序组织成为逻辑元素。服务内的所有代码都包含在 MSDNMessageService.Service 名称空间内。尽管服务代码包含在若干文件中,但是由于它们包含在同一名称空间中,因此用户不需要引用其他文件。

由于 IWebMessage 接口包含在 MSDNMessageService.Interface 名称空间中,因此使用此接口的线程类具有一个接口名称空间。

服务类

应用程序的目的是监视和处理消息队列,每一队列在收到消息时都执行不同的进程。应用程序是作为 Windows 服务来实现的。

ServiceBase 类

如前所述,服务的基本结构是从 ServiceBase 继承的类。重要的方法包括 OnStart、OnStop、OnPause 和 OnContinue,每一个替代方法都与一个服务控制操作直接对应。OnStart 方法的目的是创建 CWorker 对象,而 CWorker 类又创建 CWorkerThread 对象,然后在该对象中创建执行服务工作的线程。

服务的运行时配置(以及 CWorker 和 CWorkerThread 对象的属性)是在基于 XML 的配置文件中维护的。它的名称与创建的 .exe 文件相同,但带有一个 .cfg 后缀。配置示例如下:

<?xml version="1.0"?>

<configuration>

<ProcessList>

<ProcessDefinition

ProcessName="Worker1"

ProcessDesc="Message Worker with 2 Threads"

ProcessType="AppSpecific"

ProcessThreads="2"

InputQueue=".\private$\test_load1"

ErrorQueue=".\private$\test_error">

<OutputList>

<OutputDefinition OutputName=".\private$\test_out11" />

<OutputDefinition OutputName=".\private$\test_out12" />

</OutputList>

</ProcessDefinition>

<ProcessDefinition

ProcessName="Worker2"

ProcessDesc="Assembly Worker with 1 Thread"

ProcessType="Assembly"

ProcessThreads="1"

InputQueue=".\private$\test_load2"

ErrorQueue=".\private$\test_error">

<OutputList>

<OutputDefinition OutputName="C:\MSDNMessageService\MessageExample.dll" />

<OutputDefinition OutputName="MSDNMessageService.MessageSample.ExampleClass"/>

</OutputList>

</ProcessDefinition>

</ProcessList>

</configuration>

对此信息的访问通过来自 System.Configuration 程序集的 ConfigManager 类来管理。静态 Get 方法返回信息的集合,这些集合将被枚举以获得单个属性。这些属性集的设置决定了辅助对象的运行时特征。除了这一配置文件,您还应该创建定义 XML 文件结构的图元文件,并在其中引用位于服务器 machine.cfg 配置文件中的图元文件:

<?xml version ="1.0"?>

<MetaData xmlns="x-schema:CatMeta.xms">

<DatabaseMeta InternalName="MessageService">

<ServerWiring Interceptor="Core_XMLInterceptor"/>

<Collection

InternalName="Process" PublicName="ProcessList"

PublicRowName="ProcessDefinition"

SchemaGeneratorFlags="EMITXMLSCHEMA">

<Property InternalName="ProcessName" Type="String" MetaFlags="PRIMARYKEY" />

<Property InternalName="ProcessDesc" Type="String" />

<Property InternalName="ProcessType" Type="Int32" DefaultValue="RoundRobin" >

<Enum InternalName="RoundRobin" Value="0"/>

<Enum InternalName="AppSpecific" Value="1"/>

<Enum InternalName="Assembly" Value="2"/>

</Property>

<Property InternalName="ProcessThreads" Type="Int32" DefaultValue="1" />

<Property InternalName="InputQueue" Type="String" />

<Property InternalName="ErrorQueue" Type="String" />

<Property InternalName="OutputName" Type="String" />

<QueryMeta InternalName="All" MetaFlags="ALL" />

<QueryMeta InternalName="QueryByFile" CellName="__FILE" Operator="EQUAL" />

</Collection>

<Collection

InternalName="Output" PublicName="OutputList"

PublicRowName="OutputDefinition"

SchemaGeneratorFlags="EMITXMLSCHEMA">

<Property InternalName="ProcessName" Type="String" MetaFlags="PRIMARYKEY" />

<Property InternalName="OutputName" Type="String" MetaFlags="PRIMARYKEY" />

<QueryMeta InternalName="All" MetaFlags="ALL" />

<QueryMeta InternalName="QueryByFile" CellName="__FILE" Operator="EQUAL" />

</Collection>

</DatabaseMeta>

<RelationMeta

PrimaryTable="Process" PrimaryColumns="ProcessName"

ForeignTable="Output" ForeignColumns="ProcessName"

MetaFlags="USECONTAINMENT"/>

</MetaData>

由于 Service 类必须维护一个已创建辅助对象的列表,因此使用了 Hashtable 集合,用于保持类型对象的名称/数值对列表。Hashtable 不仅支持枚举,还允许通过关键字来查询值。在应用程序中,XML 进程名称是唯一的关键字:

private Hashtable htWorkers = new Hashtable();

IConfigCollection cWorkers = ConfigManager.Get("ProcessList",

new AppDomainSelector());

foreach (IConfigItem ciWorker in cWorkers)

{

WorkerFormatter sfWorker = new WorkerFormatter();

sfWorker.ProcessName = (string)ciWorker["ProcessName"];

sfWorker.ProcessDesc = (string)ciWorker["ProcessDesc"];

sfWorker.NumberThreads = (int)ciWorker["ProcessThreads"];

sfWorker.InputQueue = (string)ciWorker["InputQueue"];

sfWorker.ErrorQueue = (string)ciWorker["ErrorQueue"];

// 计算并定义进程类型

switch ((int)ciWorker["ProcessType"])

{

case 0:

sfWorker.ProcessType = WorkerFormatter.SFProcessType.ProcessRoundRobin;

break;

case 1:

sfWorker.ProcessType = WorkerFormatter.SFProcessType.ProcessAppSpecific;

break;

case 2:

sfWorker.ProcessType = WorkerFormatter.SFProcessType.ProcessAssembly;

break;

default:

throw new Exception("Unknown Processing Type");

}

// 执行更多的工作以读取输出信息

string sProcessName = (string)ciWorker["ProcessName"];

if (htWorkers.ContainsKey(sProcessName))

throw new ArgumentException("Process Name Must be Unique: " + sProcessName);

htWorkers.Add(sProcessName, new CWorker(sfWorker));

}

在这段代码中没有包含的主要信息是输出数据的获取。每一个进程定义中都有一组相应的输出定义项。该信息是通过如下的简单查询读取的:

string sQuery = "SELECT * FROM OutputList WHERE ProcessName=" +

sfWorker.ProcessName + " AND Selector=appdomain://";

ConfigQuery qQuery = new ConfigQuery(sQuery);

IConfigCollection cOutputs = ConfigManager.Get("OutputList", qQuery);

int iSize = cOutputs.Count, iLoop = 0;

sfWorker.OutputName = new string[iSize];

foreach (IConfigItem ciOutput in cOutputs)

sfWorker.OutputName[iLoop++] = (string)ciOutput["OutputName"];

CWorkerThread 和 Cworker 类都有相应的服务控制方法,根据服务控制操作进行调用。由于 Hashtable 中引用了每一个 CWorker 对象,因此需要枚举 Hashtable 的内容,以调用适当的服务控制方法:

foreach (CWorker cWorker in htWorkers.Values)

cWorker.Start();

类似地,实现的 OnPause、OnContinue 和 OnStop 方法是通过调用 CWorker 对象上的相应方法来执行操作的。

CWorker 类

CWorker 类的主要功能是创建和管理 CWorkerThread 对象。Start、Stop、Pause 和 Continue 方法调用相应的 CWorkerThread 方法。实际的 CWorkerThread 对象是在Start 方法中创建的。与使用 Hashtable 管理辅助对象引用的 Service 类相似,CWorker 使用 ArrayList(简单的动态数组)来维护线程对象的列表。

在这个数组内部,CWorker 类创建了 CWorkerThread 类的一个实现版本。CWorkerThread 类(将在下面讨论)是一个必须继承的抽象类。导出类定义了消息的处理方式:

aThreads = new ArrayList();

for (int idx=0; idx<sfWorker.NumberThreads; idx++)

{

WorkerThreadFormatter wfThread = new WorkerThreadFormatter();

wfThread.ProcessName = sfWorker.ProcessName;

wfThread.ProcessDesc = sfWorker.ProcessDesc;

wfThread.ThreadNumber = idx;

wfThread.InputQueue = sfWorker.InputQueue;

wfThread.ErrorQueue = sfWorker.ErrorQueue;

wfThread.OutputName = sfWorker.OutputName;

// 定义辅助类型,并将其插入辅助线程结构

CWorkerThread wtBase;

switch (sfWorker.ProcessType)

{

case WorkerFormatter.SFProcessType.ProcessRoundRobin:

wtBase = new CWorkerThreadRoundRobin(this, wfThread);

break;

case WorkerFormatter.SFProcessType.ProcessAppSpecific:

wtBase = new CWorkerThreadAppSpecific(this, wfThread);

break;

case WorkerFormatter.SFProcessType.ProcessAssembly:

wtBase = new CWorkerThreadAssembly(this, wfThread);

break;

default:

throw new Exception("Unknown Processing Type");

}

// 添加对数组的调用

aThreads.Insert(idx, wtBase);

}

一旦所有的对象都已创建,就可以通过调用每个线程对象的 Start 方法来启动它们:

foreach(CWorkerThread cThread in aThreads)

cThread.Start();

Stop、Pause 和 Continue 方法在 foreach 循环里执行的操作类似。Stop 方法具有如下的垃圾收集操作:

GC.SuppressFinalize(this);

在类析构函数中将调用 Stop 方法,这样,在没有显式调用 Stop 方法的情况下也可以正确地终止对象。如果调用了 Stop 方法,将不需要析构函数。SuppressFinalize 方法能够防止调用对象的 Finalize 方法(析构函数的实际实现)。

CWorkerThread 抽象类

CWorkerThread 是一个由 CWorkerThreadAppSpecifc、CWorkerThreadRoundRobin 和 CWorkerThreadAssembly 继承的抽象类。无论如何处理消息,队列的大部分处理是相同的,所以 CWorkerThread 类提供了这一功能。这个类提供了抽象方法(必须被实际方法替代)以管理资源和处理消息。

类的工作再一次通过 Start、Stop、Pause 和 Continue 方法来实现。在 Start 方法中引用了输入和错误队列。在 .NET 框架中,消息由 System.Messaging 名称空间处理:

// 尝试打开队列,并设置默认的读写属性

MessageQueue mqInput = new MessageQueue(sInputQueue);

mqInput.MessageReadPropertyFilter.Body = true;

mqInput.MessageReadPropertyFilter.AppSpecific = true;

MessageQueue mqError = new MessageQueue(sErrorQueue);

// 如果使用 MSMQ COM,则将格式化程序设置为 ActiveX

mqInput.Formatter = new ActiveXMessageFormatter();

mqError.Formatter = new ActiveXMessageFormatter();

一旦定义了消息队列引用,即会创建一个线程用于实际的处理函数(称为 ProcessMessages)。在 .NET 框架中,使用 System.Threading 名称空间很容易实现线程处理:

procMessage = new Thread(new ThreadStart(ProcessMessages));

procMessage.Start();

ProcessMessages 函数是基于 Boolean 值的处理循环。当数值设为 False,处理循环将终止。因此,线程对象的 Stop 方法只设置这一 Boolean 值,然后关闭打开的消息队列,并加入带有主线程的线程:

// 加入服务线程和处理线程

bRun = false;

procMessage.Join();

// 关闭打开的消息队列

mqInput.Close();

mqError.Close();

Pause 方法只设置一个 Boolean 值,使处理线程休眠半秒钟:

if (bPause)

Thread.Sleep(500);

最后,每一个 Start、Stop、Pause 和 Continue 方法将调用抽象的 OnStart、OnStop、OnPause 和 OnContinue 方法。这些抽象方法为实现的类提供了挂钩,以捕获和释放所需的资源。

ProcessMessages 循环具有如下基本结构:

接收 Message。

如果 Message 具有成功的 Receive,则调用抽象 ProcessMessage 方法。

如果 Receive 或 ProcessMessage 失败,将 Message 发送至错误队列中。 Message mInput;

try

{

// 从队列中读取,并等候 1 秒

mInput = mqInput.Receive(new TimeSpan(0,0,0,1));

}

catch (MessageQueueException mqe)

{

// 将消息设置为 null

mInput = null;

// 查看错误代码,了解是否超时

if (mqe.ErrorCode != (-1072824293) ) //0xC00E001B

{

// 如果未超时,发出一个错误并记录错误号

LogError("Error: " + mqe.Message);

throw mqe;

}

}

if (mInput != null)

{

// 得到一个要处理的消息,调用处理消息抽象方法

try

{

ProcessMessage(mInput);

}

// 捕获已知异常状态的错误

catch (CWorkerThreadException ex)

{

ProcessError(mInput, ex.Terminate);

}

// 捕获未知异常,并调用 Terminate

catch

{

ProcessError(mInput, true);

}

}

ProcessError 方法将错误的消息发送至错误队列。另外,它也可能引发异常来终止线程。如果ProcessMessage 方法引发了终止错误或 CWorkerThreadException 类型,它将执行此操作。

CworkerThread 导出类

任何从 CWorkerThread 中继承的类都必须提供 OnStart、OnStop、OnPause、OnContinue 和 ProcessMessage 方法。OnStart 和 OnStop 方法获取并释放处理资源。OnPause 和 OnContinue 方法允许临时释放和重新获取这些资源。ProcessMessage 方法应该处理消息,并在出现失败事件时引发 CWorkerThreadException 异常。

由于 CWorkerThread 构造函数定义运行时参数,导出类必须调用基类构造函数:

public CWorkerThreadDerived(CWorker v_cParent, WorkerThreadFormatter v_wfThread)

: base (v_cParent, v_wfThread) {}

导出类提供了两种类型的处理:将消息发送至另一队列,或者调用组件方法。接收和发送消息的两种实现使用了循环技术或应用程序偏移(保留在消息 AppSpecific 属性中),作为使用哪一队列的决定因素。此方案中的配置文件应该包括队列路径的列表。实现的 OnStart 和 OnStop 方法应该打开和关闭对这些队列的引用:

iQueues = wfThread.OutputName.Length;

mqOutput = new MessageQueue[iQueues];

for (int idx=0; idx<iQueues; idx++)

{

mqOutput[idx] = new MessageQueue(wfThread.OutputName[idx]);

mqOutput[idx].Formatter = new ActiveXMessageFormatter();

}

在这些方案中,消息的处理很简单:将消息发送必要的输出队列。在循环情况下,这个进程为:

try

{

mqOutput[iNextQueue].Send(v_mInput);

}

catch (Exception ex)

{

// 如果错误强制终止异常

throw new CWorkerThreadException(ex.Message, true);

}

// 计算下一个队列号

iNextQueue++;

iNextQueue %= iQueues;

后一种调用带消息参数的组件的实现方法比较有趣。ProcessMessage 方法使用 IWebMessage 接口调入一个 .NET 组件。OnStart 和 OnStop 方法获取和释放此组件的引用。

此方案中的配置文件应该包含两个项目:完整的类名和类所在文件的位置。按照 IWebMessage 接口中的定义,在组件上调用 Process 方法。

要获取对象引用,需要使用 Activator.CreateInstance 方法。此函数需要一个程序集类型。在这里,它是从程序集文件路径和类名中导出的。一旦获取对象引用,它将被放入合适的接口:

private IWebMessage iwmSample;

private string sFilePath, sTypeName;

// 保存程序集路径和类型名称

sFilePath = wfThread.OutputName[0];

sTypeName = wfThread.OutputName[1];

// 获取对必要对象的引用

Assembly asmSample = Assembly.LoadFrom(sFilePath);

Type typSample = asmSample.GetType(sTypeName);

object objSample = Activator.CreateInstance(typSample);

// 定义给对象的必要接口

iwmSample = (IWebMessage)objSample;

获取对象引用后,ProcessMessage 方法将在 IWebMessage 接口上调用 Process 方法:

WebMessageReturn wbrSample;

try

{

// 定义方法调用的参数

string sLabel = v_mInput.Label;

string sBody = (string)v_mInput.Body;

int iAppSpecific = v_mInput.AppSpecific;

// 调用方法并捕捉返回代码

wbrSample = iwmSample.Process(sLabel, sBody, iAppSpecific);

}

catch (InvalidCastException ex)

{

// 如果在消息内容中发生错误,则强制发出一个非终止异常

throw new CWorkerThreadException(ex.Message, false);

}

catch (Exception ex)

{

// 如果错误调用程序集,则强制发出终止异常

throw new CWorkerThreadException(ex.Message, true);

}

// 如果没有错误,则检查对象调用的返回状态

switch (wbrSample)

{

case WebMessageReturn.ReturnBad:

throw new CWorkerThreadException

("Unable to process message: Message marked bad", false);

case WebMessageReturn.ReturnAbort:

throw new CWorkerThreadException

("Unable to process message: Process terminating", true);

default:

break;

}

提供的示例组件将消息正文写入数据库表。如果捕获到严重数据库错误,您可能希望终止处理过程,但是在这里,仅仅将消息标记为错误的消息。

由于此示例中创建的类实例可能会获取并保留昂贵的数据库资源,所以用 OnPause 和 OnContinue 方法释放和重新获取对象引用。

检测设备

就象在所有优秀的应用程序中一样,检测设备用于监测应用程序的状态。.NET 框架大大简化了将事件日志、性能计数器和 Windows 管理检测设备 (WMI) 纳入应用程序的过程。消息应用程序使用时间日志和性能计数器,二者都是来自 System.Diagnostics 程序集。

在 ServiceBase 类中,您可以自动启用事件日志。另外,ServiceBase EventLog 成员支持写入应用程序事件日志:

EventLog.WriteEntry(sMyMessage, EventLogEntryType.Information);

对于写入事件日志而不是应用程序日志的应用程序,它能够很容易地创建和获取 EventLog 资源的引用(正如在 CWorker 类中所做的一样),并能够使用 WriteEntry 方法记录日志项:

private EventLog cLog;

string sSource = ServiceControl.ServiceControlName;

string sLog = "Application";

// 查看源是否存在,如果不存在,则创建源

if (!EventLog.SourceExists(sSource))

EventLog.CreateEventSource(sSource, sLog);

// 创建日志对象,并引用现在定义的源

cLog = new EventLog();

cLog.Source = sSource;

// 在日志中写入条目,表明创建成功

cLog.WriteEntry("已成功创建", EventLogEntryType.Information);

.NET 框架大大简化了性能计数器。对于每一个处理线程、线程导出的用户和整个应用程序,这一消息应用程序都能提供计数器,用于跟踪消息数量和每秒钟处理消息的数量。要提供此功能,您需要定义性能计数器的类别,然后增加相应的计数器实例。

性能计数器的类别在服务 OnStart 方法中定义。这些类别代表两种计数器——消息总数和每秒钟处理的消息数:

CounterCreationData[] cdMessage = new CounterCreationData[2];

cdMessage[0] = new CounterCreationData("Messages/Total",

"Total Messages Processed",

PerformanceCounterType.NumberOfItems64);

cdMessage[1] = new CounterCreationData("Messages/Second",

"Messages Processed a Second",

PerformanceCounterType.RateOfChangePerSecond32);

PerformanceCounterCategory.Create("MSDN Message Service",

"MSDN Message Service Counters", cdMessage);

一旦定义了性能计数器类别,将创建 PerformanceCounter 对象以访问计数器实例功能。PerformanceCounter 对象需要类别、计数器名称和一个可选的实例名称。对于辅助进程,将使用来自 XML 文件的进程名称,代码如下:

pcMsgTotWorker = new PerformanceCounter("MSDN Message Service",

"Messages/Total", sProcessName);

pcMsgSecWorker = new PerformanceCounter("MSDN Message Service",

"Messages/Second", sProcessName);

pcMsgTotWorker.RawValue = 0;

pcMsgSecWorker.RawValue = 0;

要增加计数器的值,仅仅需要调用适当的方法:

pcMsgTotWorker.IncrementBy(1);

pcMsgSecWorker.IncrementBy(1);

最后说明一点,服务终止时,安装的性能计数器类别应该从系统中删除:

PerformanceCounterCategory.Delete("MSDN Message Service");

由于性能计数器在 .NET 框架中工作,因此需要运行一项特殊的服务。此服务 (PerfCounterService) 提供了共享内存。计数器信息将写入共享内存,并被性能计数器系统读取。

安装

在结束以前,我们来简要介绍一下安装以及称为 installutil.exe 的安装工具。由于此应用程序是 Windows 服务,它必须使用 installutil.exe 来安装。因此,需要使用一个从 System.Configuration.Install 程序集中继承的 Installer 类:

public class ServiceRegister: Installer

{

private ServiceInstaller serviceInstaller;

private ServiceProcessInstaller processInstaller;

public ServiceRegister()

{

// 创建服务安装程序

serviceInstaller = new ServiceInstaller();

serviceInstaller.StartType = ServiceStart.Manual;

serviceInstaller.ServiceName = ServiceControl.ServiceControlName;

serviceInstaller.DisplayName = ServiceControl.ServiceControlDesc;

Installers.Add(serviceInstaller);

// 创建进程安装程序

processInstaller = new ServiceProcessInstaller();

processInstaller.RunUnderSystemAccount = true;

Installers.Add(processInstaller);

}

}

如此示例类所示,对于一个 Windows 服务,服务和服务进程各需要一个安装程序,以定义运行服务的帐户。其他安装程序允许注册事件日志和性能计数器等资源。

总结

从这个 .NET 框架应用程序示例中可以看出,以前只有 Visual C++ 程序员能够编写的应用程序,现在使用简单的面向对象程序即可实现。尽管我们的重点是 C#,但本文所述的内容也同样适用于 Visual Basic 和 Managed C++。新的 .NET 框架使开发人员能够使用任何编程语言来创建功能强大、可伸缩的 Windows 应用程序和服务。

新的 .NET 框架不仅简化和扩展了编程的种种可能,还能够轻松地将人们经常遗忘的应用程序检测设备(例如性能监测计数器和事件日志通知)合并到应用程序中。尽管这里的应用程序没有使用 Windows 管理检测设备 (WMI),但 .NET 框架同样也可以应用它。

参考资料

可伸缩的高可用性业务对象结构(英文)

MSMQ:可伸缩的高可用性负载平衡解决方案(英文)

C# 简介和概述(英文)

C# 参考(英文)

MSDN Online .NET 信息(英文)

关于作者

Carl Nolan 在北加利福尼亚的 Microsoft 电子商务解决方案小组的西区工作。该小组的工作重点是使用 Microsoft Windows .NET 平台开发基于 Internet 的解决方案。他的电子邮件地址是 carlnol@microsoft.com

请以 IE4.0 以上版本 800 * 600 浏览本站

©2001 Microsoft Corporation 版权所有。保留所有权利。使用规定。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有