分享
 
 
 

RFC1750 - Randomness Recommendations for Security

王朝other·作者佚名  2008-05-31
窄屏简体版  字體: |||超大  

Network Working Group D. Eastlake, 3rd

Request for Comments: 1750 DEC

Category: Informational S. Crocker

Cybercash

J. Schiller

MIT

December 1994

Randomness Recommendations for Security

Status of this Memo

This memo provides information for the Internet community. This memo

does not specify an Internet standard of any kind. Distribution of

this memo is unlimited.

Abstract

Security systems today are built on increasingly strong cryptographic

algorithms that foil pattern analysis attempts. However, the security

of these systems is dependent on generating secret quantities for

passWords, cryptographic keys, and similar quantities. The use of

pseudo-random processes to generate secret quantities can result in

pseudo-security. The sophisticated attacker of these security

systems may find it easier to reprodUCe the environment that produced

the secret quantities, searching the resulting small set of

possibilities, than to locate the quantities in the whole of the

number space.

Choosing random quantities to foil a resourceful and motivated

adversary is surprisingly difficult. This paper points out many

pitfalls in using traditional pseudo-random number generation

techniques for choosing such quantities. It recommends the use of

truly random hardware techniques and shows that the existing hardware

on many systems can be used for this purpose. It provides

suggestions to ameliorate the problem when a hardware solution is not

available. And it gives examples of how large such quantities need

to be for some particular applications.

Acknowledgements

Comments on this document that have been incorporated were received

from (in alphabetic order) the following:

David M. Balenson (TIS)

Don Coppersmith (IBM)

Don T. Davis (consultant)

Carl Ellison (Stratus)

Marc Horowitz (MIT)

Christian Huitema (INRIA)

Charlie Kaufman (IRIS)

Steve Kent (BBN)

Hal Murray (DEC)

Neil Haller (Bellcore)

Richard Pitkin (DEC)

Tim Redmond (TIS)

Doug Tygar (CMU)

Table of Contents

1. Introduction........................................... 3

2. Requirements........................................... 4

3. Traditional Pseudo-Random Sequences.................... 5

4. Unpredictability....................................... 7

4.1 Problems with Clocks and Serial Numbers............... 7

4.2 Timing and Content of External Events................ 8

4.3 The Fallacy of Complex Manipulation.................. 8

4.4 The Fallacy of Selection from a Large Database....... 9

5. Hardware for Randomness............................... 10

5.1 Volume Required...................................... 10

5.2 Sensitivity to Skew.................................. 10

5.2.1 Using Stream Parity to De-Skew..................... 11

5.2.2 Using Transition Mappings to De-Skew............... 12

5.2.3 Using FFT to De-Skew............................... 13

5.2.4 Using Compression to De-Skew....................... 13

5.3 Existing Hardware Can Be Used For Randomness......... 14

5.3.1 Using Existing Sound/Video Input................... 14

5.3.2 Using Existing Disk Drives......................... 14

6. Recommended Non-Hardware Strategy..................... 14

6.1 Mixing Functions..................................... 15

6.1.1 A Trivial Mixing Function.......................... 15

6.1.2 Stronger Mixing Functions.......................... 16

6.1.3 Diff-Hellman as a Mixing Function.................. 17

6.1.4 Using a Mixing Function to Stretch Random Bits..... 17

6.1.5 Other Factors in Choosing a Mixing Function........ 18

6.2 Non-Hardware Sources of Randomness................... 19

6.3 Cryptographically Strong Sequences................... 19

6.3.1 Traditional Strong Sequences....................... 20

6.3.2 The Blum Blum Shub Sequence Generator.............. 21

7. Key Generation Standards.............................. 22

7.1 US DoD Recommendations for Password Generation....... 23

7.2 X9.17 Key Generation................................. 23

8. Examples of Randomness Required....................... 24

8.1 Password Generation................................. 24

8.2 A Very High Security Cryptographic Key............... 25

8.2.1 Effort per Key Trial............................... 25

8.2.2 Meet in the Middle Attacks......................... 26

8.2.3 Other Considerations............................... 26

9. Conclusion............................................ 27

10. Security Considerations.............................. 27

References............................................... 28

Authors' Addresses....................................... 30

1. Introduction

Software cryptography is coming into wider use. Systems like

Kerberos, PEM, PGP, etc. are maturing and becoming a part of the

network landscape [PEM]. These systems provide substantial

protection against snooping and spoofing. However, there is a

potential flaw. At the heart of all cryptographic systems is the

generation of secret, unguessable (i.e., random) numbers.

For the present, the lack of generally available facilities for

generating such unpredictable numbers is an open wound in the design

of cryptographic software. For the software developer who wants to

build a key or password generation procedure that runs on a wide

range of hardware, the only safe strategy so far has been to force

the local installation to supply a suitable routine to generate

random numbers. To say the least, this is an awkward, error-prone

and unpalatable solution.

It is important to keep in mind that the requirement is for data that

an adversary has a very low probability of guessing or determining.

This will fail if pseudo-random data is used which only meets

traditional statistical tests for randomness or which is based on

limited range sources, such as clocks. Frequently such random

quantities are determinable by an adversary searching through an

embarrassingly small space of possibilities.

This informational document suggests techniques for producing random

quantities that will be resistant to such attack. It recommends that

future systems include hardware random number generation or provide

Access to existing hardware that can be used for this purpose. It

suggests methods for use if such hardware is not available. And it

gives some estimates of the number of random bits required for sample

applications.

2. Requirements

Probably the most commonly encountered randomness requirement today

is the user password. This is usually a simple character string.

Obviously, if a password can be guessed, it does not provide

security. (For re-usable passwords, it is desirable that users be

able to remember the password. This may make it advisable to use

pronounceable character strings or phrases composed on ordinary

words. But this only affects the format of the password information,

not the requirement that the password be very hard to guess.)

Many other requirements come from the cryptographic arena.

Cryptographic techniques can be used to provide a variety of services

including confidentiality and authentication. Such services are

based on quantities, traditionally called "keys", that are unknown to

and unguessable by an adversary.

In some cases, such as the use of symmetric encryption with the one

time pads [CRYPTO*] or the US Data Encryption Standard [DES], the

parties who wish to communicate confidentially and/or with

authentication must all know the same secret key. In other cases,

using what are called asymmetric or "public key" cryptographic

techniques, keys come in pairs. One key of the pair is private and

must be kept secret by one party, the other is public and can be

published to the world. It is computationally infeasible to

determine the private key from the public key [ASYMMETRIC, CRYPTO*].

The frequency and volume of the requirement for random quantities

differs greatly for different cryptographic systems. Using pure RSA

[CRYPTO*], random quantities are required when the key pair is

generated, but thereafter any number of messages can be signed

without any further need for randomness. The public key Digital

Signature Algorithm that has been proposed by the US National

Institute of Standards and Technology (NIST) requires good random

numbers for each signature. And encrypting with a one time pad, in

principle the strongest possible encryption technique, requires a

volume of randomness equal to all the messages to be processed.

In most of these cases, an adversary can try to determine the

"secret" key by trial and error. (This is possible as long as the

key is enough smaller than the message that the correct key can be

uniquely identified.) The probability of an adversary succeeding at

this must be made acceptably low, depending on the particular

application. The size of the space the adversary must search is

related to the amount of key "information" present in the information

theoretic sense [SHANNON]. This depends on the number of different

secret values possible and the probability of each value as follows:

-----

Bits-of-info = \ - p * log ( p )

/ i 2 i

/

-----

where i varies from 1 to the number of possible secret values and p

sub i is the probability of the value numbered i. (Since p sub i is

less than one, the log will be negative so each term in the sum will

be non-negative.)

If there are 2^n different values of equal probability, then n bits

of information are present and an adversary would, on the average,

have to try half of the values, or 2^(n-1) , before guessing the

secret quantity. If the probability of different values is unequal,

then there is less information present and fewer guesses will, on

average, be required by an adversary. In particular, any values that

the adversary can know are impossible, or are of low probability, can

be initially ignored by an adversary, who will search through the

more probable values first.

For example, consider a cryptographic system that uses 56 bit keys.

If these 56 bit keys are derived by using a fixed pseudo-random

number generator that is seeded with an 8 bit seed, then an adversary

needs to search through only 256 keys (by running the pseudo-random

number generator with every possible seed), not the 2^56 keys that

may at first appear to be the case. Only 8 bits of "information" are

in these 56 bit keys.

3. Traditional Pseudo-Random Sequences

Most traditional sources of random numbers use deterministic sources

of "pseudo-random" numbers. These typically start with a "seed"

quantity and use numeric or logical operations to produce a sequence

of values.

[KNUTH] has a classic eXPosition on pseudo-random numbers.

Applications he mentions are simulation of natural phenomena,

sampling, numerical analysis, testing computer programs, decision

making, and games. None of these have the same characteristics as

the sort of security uses we are talking about. Only in the last two

could there be an adversary trying to find the random quantity.

However, in these cases, the adversary normally has only a single

chance to use a guessed value. In guessing passwords or attempting

to break an encryption scheme, the adversary normally has many,

perhaps unlimited, chances at guessing the correct value and should

be assumed to be aided by a computer.

For testing the "randomness" of numbers, Knuth suggests a variety of

measures including statistical and spectral. These tests check

things like autocorrelation between different parts of a "random"

sequence or distribution of its values. They could be met by a

constant stored random sequence, such as the "random" sequence

printed in the CRC Standard Mathematical Tables [CRC].

A typical pseudo-random number generation technique, known as a

linear congruence pseudo-random number generator, is modular

arithmetic where the N+1th value is calculated from the Nth value by

V = ( V * a + b )(Mod c)

N+1 N

The above technique has a strong relationship to linear shift

register pseudo-random number generators, which are well understood

cryptographically [SHIFT*]. In such generators bits are introduced

at one end of a shift register as the Exclusive Or (binary sum

without carry) of bits from selected fixed taps into the register.

For example:

+----+ +----+ +----+ +----+

B <-- B <-- B <-- . . . . . . <-- B <-+

0 1 2 n

+----+ +----+ +----+ +----+

V +-----+

V +---------------->

V +-----------------------------> XOR

+--------------------------------------------------->

+-----+

V = ( ( V * 2 ) + B .xor. B ... )(Mod 2^n)

N+1 N 0 2

The goodness of traditional pseudo-random number generator algorithms

is measured by statistical tests on such sequences. Carefully chosen

values of the initial V and a, b, and c or the placement of shift

register tap in the above simple processes can produce Excellent

statistics.

These sequences may be adequate in simulations (Monte Carlo

experiments) as long as the sequence is orthogonal to the structure

of the space being explored. Even there, suBTle patterns may cause

problems. However, such sequences are clearly bad for use in

security applications. They are fully predictable if the initial

state is known. Depending on the form of the pseudo-random number

generator, the sequence may be determinable from observation of a

short portion of the sequence [CRYPTO*, STERN]. For example, with

the generators above, one can determine V(n+1) given knowledge of

V(n). In fact, it has been shown that with these techniques, even if

only one bit of the pseudo-random values is released, the seed can be

determined from short sequences.

Not only have linear congruent generators been broken, but techniques

are now known for breaking all polynomial congruent generators

[KRAWCZYK].

4. Unpredictability

Randomness in the traditional sense described in section 3 is NOT the

same as the unpredictability required for security use.

For example, use of a widely available constant sequence, such as

that from the CRC tables, is very weak against an adversary. Once

they learn of or guess it, they can easily break all security, future

and past, based on the sequence [CRC]. Yet the statistical

properties of these tables are good.

The following sections describe the limitations of some randomness

generation techniques and sources.

4.1 Problems with Clocks and Serial Numbers

Computer clocks, or similar operating system or hardware values,

provide significantly fewer real bits of unpredictability than might

appear from their specifications.

Tests have been done on clocks on numerous systems and it was found

that their behavior can vary widely and in unexpected ways. One

version of an operating system running on one set of hardware may

actually provide, say, microsecond resolution in a clock while a

different configuration of the "same" system may always provide the

same lower bits and only count in the upper bits at much lower

resolution. This means that successive reads on the clock may

produce identical values even if enough time has passed that the

value "should" change based on the nominal clock resolution. There

are also cases where frequently reading a clock can produce

artificial sequential values because of extra code that checks for

the clock being unchanged between two reads and increases it by one!

Designing portable application code to generate unpredictable numbers

based on such system clocks is particularly challenging because the

system designer does not always know the properties of the system

clocks that the code will execute on.

Use of a hardware serial number such as an Ethernet address may also

provide fewer bits of uniqueness than one would guess. Such

quantities are usually heavily structured and subfields may have only

a limited range of possible values or values easily guessable based

on approximate date of manufacture or other data. For example, it is

likely that most of the Ethernet cards installed on Digital Equipment

Corporation (DEC) hardware within DEC were manufactured by DEC

itself, which significantly limits the range of built in addresses.

Problems such as those described above related to clocks and serial

numbers make code to produce unpredictable quantities difficult if

the code is to be ported across a variety of computer platforms and

systems.

4.2 Timing and Content of External Events

It is possible to measure the timing and content of mouse movement,

key strokes, and similar user events. This is a reasonable source of

unguessable data with some qualifications. On some machines, inputs

such as key strokes are buffered. Even though the user's inter-

keystroke timing may have sufficient variation and unpredictability,

there might not be an easy way to access that variation. Another

problem is that no standard method exists to sample timing details.

This makes it hard to build standard software intended for

distribution to a large range of machines based on this technique.

The amount of mouse movement or the keys actually hit are usually

easier to access than timings but may yield less unpredictability as

the user may provide highly repetitive input.

Other external events, such as network packet arrival times, can also

be used with care. In particular, the possibility of manipulation of

such times by an adversary must be considered.

4.3 The Fallacy of Complex Manipulation

One strategy which may give a misleading appearance of

unpredictability is to take a very complex algorithm (or an excellent

traditional pseudo-random number generator with good statistical

properties) and calculate a cryptographic key by starting with the

current value of a computer system clock as the seed. An adversary

who knew roughly when the generator was started would have a

relatively small number of seed values to test as they would know

likely values of the system clock. Large numbers of pseudo-random

bits could be generated but the search space an adversary would need

to check could be quite small.

Thus very strong and/or complex manipulation of data will not help if

the adversary can learn what the manipulation is and there is not

enough unpredictability in the starting seed value. Even if they can

not learn what the manipulation is, they may be able to use the

limited number of results stemming from a limited number of seed

values to defeat security.

Another serious strategy error is to assume that a very complex

pseudo-random number generation algorithm will produce strong random

numbers when there has been no theory behind or analysis of the

algorithm. There is a excellent example of this fallacy right near

the beginning of chapter 3 in [KNUTH] where the author describes a

complex algorithm. It was intended that the machine language program

corresponding to the algorithm would be so complicated that a person

trying to read the code without comments wouldn't know what the

program was doing. Unfortunately, actual use of this algorithm

showed that it almost immediately converged to a single repeated

value in one case and a small cycle of values in another case.

Not only does complex manipulation not help you if you have a limited

range of seeds but blindly chosen complex manipulation can destroy

the randomness in a good seed!

4.4 The Fallacy of Selection from a Large Database

Another strategy that can give a misleading appearance of

unpredictability is selection of a quantity randomly from a database

and assume that its strength is related to the total number of bits

in the database. For example, typical USENET servers as of this date

process over 35 megabytes of information per day. Assume a random

quantity was selected by fetching 32 bytes of data from a random

starting point in this data. This does not yield 32*8 = 256 bits

worth of unguessability. Even after allowing that much of the data

is human language and probably has more like 2 or 3 bits of

information per byte, it doesn't yield 32*2.5 = 80 bits of

unguessability. For an adversary with access to the same 35

megabytes the unguessability rests only on the starting point of the

selection. That is, at best, about 25 bits of unguessability in this

case.

The same argument applies to selecting sequences from the data on a

CD ROM or Audio CD recording or any other large public database. If

the adversary has access to the same database, this "selection from a

large volume of data" step buys very little. However, if a selection

can be made from data to which the adversary has no access, such as

system buffers on an active multi-user system, it may be of some

help.

5. Hardware for Randomness

Is there any hope for strong portable randomness in the future?

There might be. All that's needed is a physical source of

unpredictable numbers.

A thermal noise or radioactive decay source and a fast, free-running

oscillator would do the trick directly [GIFFORD]. This is a trivial

amount of hardware, and could easily be included as a standard part

of a computer system's architecture. Furthermore, any system with a

spinning disk or the like has an adequate source of randomness

[DAVIS]. All that's needed is the common perception among computer

vendors that this small additional hardware and the software to

access it is necessary and useful.

5.1 Volume Required

How much unpredictability is needed? Is it possible to quantify the

requirement in, say, number of random bits per second?

The answer is not very much is needed. For DES, the key is 56 bits

and, as we show in an example in Section 8, even the highest security

system is unlikely to require a keying material of over 200 bits. If

a series of keys are needed, it can be generated from a strong random

seed using a cryptographically strong sequence as explained in

Section 6.3. A few hundred random bits generated once a day would be

enough using such techniques. Even if the random bits are generated

as slowly as one per second and it is not possible to overlap the

generation process, it should be tolerable in high security

applications to wait 200 seconds occasionally.

These numbers are trivial to achieve. It could be done by a person

repeatedly tossing a coin. Almost any hardware process is likely to

be much faster.

5.2 Sensitivity to Skew

Is there any specific requirement on the shape of the distribution of

the random numbers? The good news is the distribution need not be

uniform. All that is needed is a conservative estimate of how non-

uniform it is to bound performance. Two simple techniques to de-skew

the bit stream are given below and stronger techniques are mentioned

in Section 6.1.2 below.

5.2.1 Using Stream Parity to De-Skew

Consider taking a sufficiently long string of bits and map the string

to "zero" or "one". The mapping will not yield a perfectly uniform

distribution, but it can be as close as desired. One mapping that

serves the purpose is to take the parity of the string. This has the

advantages that it is robust across all degrees of skew up to the

estimated maximum skew and is absolutely trivial to implement in

hardware.

The following analysis gives the number of bits that must be sampled:

Suppose the ratio of ones to zeros is 0.5 + e : 0.5 - e, where e is

between 0 and 0.5 and is a measure of the "eccentricity" of the

distribution. Consider the distribution of the parity function of N

bit samples. The probabilities that the parity will be one or zero

will be the sum of the odd or even terms in the binomial expansion of

(p + q)^N, where p = 0.5 + e, the probability of a one, and q = 0.5 -

e, the probability of a zero.

These sums can be computed easily as

N N

1/2 * ( ( p + q ) + ( p - q ) )

and

N N

1/2 * ( ( p + q ) - ( p - q ) ).

(Which one corresponds to the probability the parity will be 1

depends on whether N is odd or even.)

Since p + q = 1 and p - q = 2e, these expressions reduce to

N

1/2 * [1 + (2e) ]

and

N

1/2 * [1 - (2e) ].

Neither of these will ever be exactly 0.5 unless e is zero, but we

can bring them arbitrarily close to 0.5. If we want the

probabilities to be within some delta d of 0.5, i.e. then

N

( 0.5 + ( 0.5 * (2e) ) ) < 0.5 + d.

Solving for N yields N > log(2d)/log(2e). (Note that 2e is less than

1, so its log is negative. Division by a negative number reverses

the sense of an inequality.)

The following table gives the length of the string which must be

sampled for various degrees of skew in order to come within 0.001 of

a 50/50 distribution.

+---------+--------+-------+

Prob(1) e N

+---------+--------+-------+

0.5 0.00 1

0.6 0.10 4

0.7 0.20 7

0.8 0.30 13

0.9 0.40 28

0.95 0.45 59

0.99 0.49 308

+---------+--------+-------+

The last entry shows that even if the distribution is skewed 99% in

favor of ones, the parity of a string of 308 samples will be within

0.001 of a 50/50 distribution.

5.2.2 Using Transition Mappings to De-Skew

Another technique, originally due to von Neumann [VON NEUMANN], is to

examine a bit stream as a sequence of non-overlapping pairs. You

could then discard any 00 or 11 pairs found, interpret 01 as a 0 and

10 as a 1. Assume the probability of a 1 is 0.5+e and the

probability of a 0 is 0.5-e where e is the eccentricity of the source

and described in the previous section. Then the probability of each

pair is as follows:

+------+-----------------------------------------+

pair probability

+------+-----------------------------------------+

00 (0.5 - e)^2 = 0.25 - e + e^2

01 (0.5 - e)*(0.5 + e) = 0.25 - e^2

10 (0.5 + e)*(0.5 - e) = 0.25 - e^2

11 (0.5 + e)^2 = 0.25 + e + e^2

+------+-----------------------------------------+

This technique will completely eliminate any bias but at the expense

of taking an indeterminate number of input bits for any particular

desired number of output bits. The probability of any particular

pair being discarded is 0.5 + 2e^2 so the expected number of input

bits to produce X output bits is X/(0.25 - e^2).

This technique assumes that the bits are from a stream where each bit

has the same probability of being a 0 or 1 as any other bit in the

stream and that bits are not correlated, i.e., that the bits are

identical independent distributions. If alternate bits were from two

correlated sources, for example, the above analysis breaks down.

The above technique also provides another illustration of how a

simple statistical analysis can mislead if one is not always on the

lookout for patterns that could be exploited by an adversary. If the

algorithm were mis-read slightly so that overlapping successive bits

pairs were used instead of non-overlapping pairs, the statistical

analysis given is the same; however, instead of provided an unbiased

uncorrelated series of random 1's and 0's, it instead produces a

totally predictable sequence of exactly alternating 1's and 0's.

5.2.3 Using FFT to De-Skew

When real world data consists of strongly biased or correlated bits,

it may still contain useful amounts of randomness. This randomness

can be extracted through use of the discrete Fourier transform or its

optimized variant, the FFT.

Using the Fourier transform of the data, strong correlations can be

discarded. If adequate data is processed and remaining correlations

decay, spectral lines approaching statistical independence and

normally distributed randomness can be produced [BRILLINGER].

5.2.4 Using Compression to De-Skew

Reversible compression techniques also provide a crude method of de-

skewing a skewed bit stream. This follows directly from the

definition of reversible compression and the formula in Section 2

above for the amount of information in a sequence. Since the

compression is reversible, the same amount of information must be

present in the shorter output than was present in the longer input.

By the Shannon information equation, this is only possible if, on

average, the probabilities of the different shorter sequences are

more uniformly distributed than were the probabilities of the longer

sequences. Thus the shorter sequences are de-skewed relative to the

input.

However, many compression techniques add a somewhat predicatable

preface to their output stream and may insert such a sequence again

periodically in their output or otherwise introduce subtle patterns

of their own. They should be considered only a rough technique

compared with those described above or in Section 6.1.2. At a

minimum, the beginning of the compressed sequence should be skipped

and only later bits used for applications requiring random bits.

5.3 Existing Hardware Can Be Used For Randomness

As described below, many computers come with hardware that can, with

care, be used to generate truly random quantities.

5.3.1 Using Existing Sound/Video Input

Increasingly computers are being built with inputs that digitize some

real world analog source, such as sound from a microphone or video

input from a camera. Under appropriate circumstances, such input can

provide reasonably high quality random bits. The "input" from a

sound digitizer with no source plugged in or a camera with the lens

cap on, if the system has enough gain to detect anything, is

essentially thermal noise.

For example, on a SPARCstation, one can read from the /dev/audio

device with nothing plugged into the microphone jack. Such data is

essentially random noise although it should not be trusted without

some checking in case of hardware failure. It will, in any case,

need to be de-skewed as described elsewhere.

Combining this with compression to de-skew one can, in UNIXese,

generate a huge amount of medium quality random data by doing

cat /dev/audio compress - >random-bits-file

5.3.2 Using Existing Disk Drives

Disk drives have small random fluctuations in their rotational speed

due to chaotic air turbulence [DAVIS]. By adding low level disk seek

time instrumentation to a system, a series of measurements can be

obtained that include this randomness. Such data is usually highly

correlated so that significant processing is needed, including FFT

(see section 5.2.3). Nevertheless experimentation has shown that,

with such processing, disk drives easily produce 100 bits a minute or

more of excellent random data.

Partly offsetting this need for processing is the fact that disk

drive failure will normally be rapidly noticed. Thus, problems with

this method of random number generation due to hardware failure are

very unlikely.

6. Recommended Non-Hardware Strategy

What is the best overall strategy for meeting the requirement for

unguessable random numbers in the absence of a reliable hardware

source? It is to obtain random input from a large number of

uncorrelated sources and to mix them with a strong mixing function.

Such a function will preserve the randomness present in any of the

sources even if other quantities being combined are fixed or easily

guessable. This may be advisable even with a good hardware source as

hardware can also fail, though this should be weighed against any

increase in the chance of overall failure due to added software

complexity.

6.1 Mixing Functions

A strong mixing function is one which combines two or more inputs and

produces an output where each output bit is a different complex non-

linear function of all the input bits. On average, changing any

input bit will change about half the output bits. But because the

relationship is complex and non-linear, no particular output bit is

guaranteed to change when any particular input bit is changed.

Consider the problem of converting a stream of bits that is skewed

towards 0 or 1 to a shorter stream which is more random, as discussed

in Section 5.2 above. This is simply another case where a strong

mixing function is desired, mixing the input bits to produce a

smaller number of output bits. The technique given in Section 5.2.1

of using the parity of a number of bits is simply the result of

successively Exclusive Or'ing them which is examined as a trivial

mixing function immediately below. Use of stronger mixing functions

to extract more of the randomness in a stream of skewed bits is

examined in Section 6.1.2.

6.1.1 A Trivial Mixing Function

A trivial example for single bit inputs is the Exclusive Or function,

which is equivalent to addition without carry, as show in the table

below. This is a degenerate case in which the one output bit always

changes for a change in either input bit. But, despite its

simplicity, it will still provide a useful illustration.

+-----------+-----------+----------+

input 1 input 2 output

+-----------+-----------+----------+

0 0 0

0 1 1

1 0 1

1 1 0

+-----------+-----------+----------+

If inputs 1 and 2 are uncorrelated and combined in this fashion then

the output will be an even better (less skewed) random bit than the

inputs. If we assume an "eccentricity" e as defined in Section 5.2

above, then the output eccentricity relates to the input eccentricity

as follows:

e = 2 * e * e

output input 1 input 2

Since e is never greater than 1/2, the eccentricity is always

improved except in the case where at least one input is a totally

skewed constant. This is illustrated in the following table where

the top and left side values are the two input eccentricities and the

entries are the output eccentricity:

+--------+--------+--------+--------+--------+--------+--------+

e 0.00 0.10 0.20 0.30 0.40 0.50

+--------+--------+--------+--------+--------+--------+--------+

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.00 0.02 0.04 0.06 0.08 0.10

0.20 0.00 0.04 0.08 0.12 0.16 0.20

0.30 0.00 0.06 0.12 0.18 0.24 0.30

0.40 0.00 0.08 0.16 0.24 0.32 0.40

0.50 0.00 0.10 0.20 0.30 0.40 0.50

+--------+--------+--------+--------+--------+--------+--------+

However, keep in mind that the above calculations assume that the

inputs are not correlated. If the inputs were, say, the parity of

the number of minutes from midnight on two clocks accurate to a few

seconds, then each might appear random if sampled at random intervals

much longer than a minute. Yet if they were both sampled and

combined with xor, the result would be zero most of the time.

6.1.2 Stronger Mixing Functions

The US Government Data Encryption Standard [DES] is an example of a

strong mixing function for multiple bit quantities. It takes up to

120 bits of input (64 bits of "data" and 56 bits of "key") and

produces 64 bits of output each of which is dependent on a complex

non-linear function of all input bits. Other strong encryption

functions with this characteristic can also be used by considering

them to mix all of their key and data input bits.

Another good family of mixing functions are the "message digest" or

hashing functions such as The US Government Secure Hash Standard

[SHS] and the MD2, MD4, MD5 [MD2, MD4, MD5] series. These functions

all take an arbitrary amount of input and produce an output mixing

all the input bits. The MD* series produce 128 bits of output and SHS

produces 160 bits.

Although the message digest functions are designed for variable

amounts of input, DES and other encryption functions can also be used

to combine any number of inputs. If 64 bits of output is adequate,

the inputs can be packed into a 64 bit data quantity and successive

56 bit keys, padding with zeros if needed, which are then used to

successively encrypt using DES in Electronic Codebook Mode [DES

MODES]. If more than 64 bits of output are needed, use more complex

mixing. For example, if inputs are packed into three quantities, A,

B, and C, use DES to encrypt A with B as a key and then with C as a

key to produce the 1st part of the output, then encrypt B with C and

then A for more output and, if necessary, encrypt C with A and then B

for yet more output. Still more output can be produced by reversing

the order of the keys given above to stretch things. The same can be

done with the hash functions by hashing various subsets of the input

data to produce multiple outputs. But keep in mind that it is

impossible to get more bits of "randomness" out than are put in.

An example of using a strong mixing function would be to reconsider

the case of a string of 308 bits each of which is biased 99% towards

zero. The parity technique given in Section 5.2.1 above reduced this

to one bit with only a 1/1000 deviance from being equally likely a

zero or one. But, applying the equation for information given in

Section 2, this 308 bit sequence has 5 bits of information in it.

Thus hashing it with SHS or MD5 and taking the bottom 5 bits of the

result would yield 5 unbiased random bits as opposed to the single

bit given by calculating the parity of the string.

6.1.3 Diffie-Hellman as a Mixing Function

Diffie-Hellman exponential key exchange is a technique that yields a

shared secret between two parties that can be made computationally

infeasible for a third party to determine even if they can observe

all the messages between the two communicating parties. This shared

secret is a mixture of initial quantities generated by each of them

[D-H]. If these initial quantities are random, then the shared

secret contains the combined randomness of them both, assuming they

are uncorrelated.

6.1.4 Using a Mixing Function to Stretch Random Bits

While it is not necessary for a mixing function to produce the same

or fewer bits than its inputs, mixing bits cannot "stretch" the

amount of random unpredictability present in the inputs. Thus four

inputs of 32 bits each where there is 12 bits worth of

unpredicatability (such as 4,096 equally probable values) in each

input cannot produce more than 48 bits worth of unpredictable output.

The output can be expanded to hundreds or thousands of bits by, for

example, mixing with successive integers, but the clever adversary's

search space is still 2^48 possibilities. Furthermore, mixing to

fewer bits than are input will tend to strengthen the randomness of

the output the way using Exclusive Or to produce one bit from two did

above.

The last table in Section 6.1.1 shows that mixing a random bit with a

constant bit with Exclusive Or will produce a random bit. While this

is true, it does not provide a way to "stretch" one random bit into

more than one. If, for example, a random bit is mixed with a 0 and

then with a 1, this produces a two bit sequence but it will always be

either 01 or 10. Since there are only two possible values, there is

still only the one bit of original randomness.

6.1.5 Other Factors in Choosing a Mixing Function

For local use, DES has the advantages that it has been widely tested

for flaws, is widely documented, and is widely implemented with

hardware and software implementations available all over the world

including source code available by anonymous FTP. The SHS and MD*

family are younger algorithms which have been less tested but there

is no particular reason to believe they are flawed. Both MD5 and SHS

were derived from the earlier MD4 algorithm. They all have source

code available by anonymous FTP [SHS, MD2, MD4, MD5].

DES and SHS have been vouched for the the US National Security Agency

(NSA) on the basis of criteria that primarily remain secret. While

this is the cause of much speculation and doubt, investigation of DES

over the years has indicated that NSA involvement in modifications to

its design, which originated with IBM, was primarily to strengthen

it. No concealed or special weakness has been found in DES. It is

almost certain that the NSA modification to MD4 to produce the SHS

similarly strengthened the algorithm, possibly against threats not

yet known in the public cryptographic community.

DES, SHS, MD4, and MD5 are royalty free for all purposes. MD2 has

been freely licensed only for non-profit use in connection with

Privacy Enhanced Mail [PEM]. Between the MD* algorithms, some people

believe that, as with "Goldilocks and the Three Bears", MD2 is strong

but too slow, MD4 is fast but too weak, and MD5 is just right.

Another advantage of the MD* or similar hashing algorithms over

encryption algorithms is that they are not subject to the same

regulations imposed by the US Government prohibiting the unlicensed

export or import of encryption/decryption software and hardware. The

same should be true of DES rigged to produce an irreversible hash

code but most DES packages are oriented to reversible encryption.

6.2 Non-Hardware Sources of Randomness

The best source of input for mixing would be a hardware randomness

such as disk drive timing affected by air turbulence, audio input

with thermal noise, or radioactive decay. However, if that is not

available there are other possibilities. These include system

clocks, system or input/output buffers, user/system/hardware/network

serial numbers and/or addresses and timing, and user input.

Unfortunately, any of these sources can produce limited or

predicatable values under some circumstances.

Some of the sources listed above would be quite strong on multi-user

systems where, in essence, each user of the system is a source of

randomness. However, on a small single user system, such as a

typical IBM PC or Apple Macintosh, it might be possible for an

adversary to assemble a similar configuration. This could give the

adversary inputs to the mixing process that were sufficiently

correlated to those used originally as to make exhaustive search

practical.

The use of multiple random inputs with a strong mixing function is

recommended and can overcome weakness in any particular input. For

example, the timing and content of requested "random" user keystrokes

can yield hundreds of random bits but conservative assumptions need

to be made. For example, assuming a few bits of randomness if the

inter-keystroke interval is unique in the sequence up to that point

and a similar assumption if the key hit is unique but assuming that

no bits of randomness are present in the initial key value or if the

timing or key value duplicate previous values. The results of mixing

these timings and characters typed could be further combined with

clock values and other inputs.

This strategy may make practical portable code to produce good random

numbers for security even if some of the inputs are very weak on some

of the target systems. However, it may still fail against a high

grade attack on small single user systems, especially if the

adversary has ever been able to observe the generation process in the

past. A hardware based random source is still preferable.

6.3 Cryptographically Strong Sequences

In cases where a series of random quantities must be generated, an

adversary may learn some values in the sequence. In general, they

should not be able to predict other values from the ones that they

know.

The correct technique is to start with a strong random seed, take

cryptographically strong steps from that seed [CRYPTO2, CRYPTO3], and

do not reveal the complete state of the generator in the sequence

elements. If each value in the sequence can be calculated in a fixed

way from the previous value, then when any value is compromised, all

future values can be determined. This would be the case, for

example, if each value were a constant function of the previously

used values, even if the function were a very strong, non-invertible

message digest function.

It should be noted that if your technique for generating a sequence

of key values is fast enough, it can trivially be used as the basis

for a confidentiality system. If two parties use the same sequence

generating technique and start with the same seed material, they will

generate identical sequences. These could, for example, be xor'ed at

one end with data being send, encrypting it, and xor'ed with this

data as received, decrypting it due to the reversible properties of

the xor operation.

6.3.1 Traditional Strong Sequences

A traditional way to achieve a strong sequence has been to have the

values be produced by hashing the quantities produced by

concatenating the seed with successive integers or the like and then

mask the values obtained so as to limit the amount of generator state

available to the adversary.

It may also be possible to use an "encryption" algorithm with a

random key and seed value to encrypt and feedback some or all of the

output encrypted value into the value to be encrypted for the next

iteration. Appropriate feedback techniques will usually be

recommended with the encryption algorithm. An example is shown below

where shifting and maSKINg are used to combine the cypher output

feedback. This type of feedback is recommended by the US Government

in connection with DES [DES MODES].

+---------------+

V

n

+--+------------+

+---------+

+---------> +-----+

+--+ Encrypt <--- Key

+-------- +-----+

+---------+

V V

+------------+--+

V

n+1

+---------------+

Note that if a shift of one is used, this is the same as the shift

register technique described in Section 3 above but with the all

important difference that the feedback is determined by a complex

non-linear function of all bits rather than a simple linear or

polynomial combination of output from a few bit position taps.

It has been shown by Donald W. Davies that this sort of shifted

partial output feedback significantly weakens an algorithm compared

will feeding all of the output bits back as input. In particular,

for DES, repeated encrypting a full 64 bit quantity will give an

expected repeat in about 2^63 iterations. Feeding back anything less

than 64 (and more than 0) bits will give an expected repeat in

between 2**31 and 2**32 iterations!

To predict values of a sequence from others when the sequence was

generated by these techniques is equivalent to breaking the

cryptosystem or inverting the "non-invertible" hashing involved with

only partial information available. The less information revealed

each iteration, the harder it will be for an adversary to predict the

sequence. Thus it is best to use only one bit from each value. It

has been shown that in some cases this makes it impossible to break a

system even when the cryptographic system is invertible and can be

broken if all of each generated value was revealed.

6.3.2 The Blum Blum Shub Sequence Generator

Currently the generator which has the strongest public proof of

strength is called the Blum Blum Shub generator after its inventors

[BBS]. It is also very simple and is based on quadratic residues.

It's only disadvantage is that is is computationally intensive

compared with the traditional techniques give in 6.3.1 above. This

is not a serious draw back if it is used for moderately infrequent

purposes, such as generating session keys.

Simply choose two large prime numbers, say p and q, which both have

the property that you get a remainder of 3 if you divide them by 4.

Let n = p * q. Then you choose a random number x relatively prime to

n. The initial seed for the generator and the method for calculating

subsequent values are then

2

s = ( x )(Mod n)

0

2

s = ( s )(Mod n)

i+1 i

You must be careful to use only a few bits from the bottom of each s.

It is always safe to use only the lowest order bit. If you use no

more than the

log ( log ( s ) )

2 2 i

low order bits, then predicting any additional bits from a sequence

generated in this manner is provable as hard as factoring n. As long

as the initial x is secret, you can even make n public if you want.

An intersting characteristic of this generator is that you can

directly calculate any of the s values. In particular

i

( ( 2 )(Mod (( p - 1 ) * ( q - 1 )) ) )

s = ( s )(Mod n)

i 0

This means that in applications where many keys are generated in this

fashion, it is not necessary to save them all. Each key can be

effectively indexed and recovered from that small index and the

initial s and n.

7. Key Generation Standards

Several public standards are now in place for the generation of keys.

Two of these are described below. Both use DES but any equally

strong or stronger mixing function could be substituted.

7.1 US DoD Recommendations for Password Generation

The United States Department of Defense has specific recommendations

for password generation [DoD]. They suggest using the US Data

Encryption Standard [DES] in Output Feedback Mode [DES MODES] as

follows:

use an initialization vector determined from

the system clock,

system ID,

user ID, and

date and time;

use a key determined from

system interrupt registers,

system status registers, and

system counters; and,

as plain text, use an external randomly generated 64 bit

quantity such as 8 characters typed in by a system

administrator.

The password can then be calculated from the 64 bit "cipher text"

generated in 64-bit Output Feedback Mode. As many bits as are needed

can be taken from these 64 bits and expanded into a pronounceable

word, phrase, or other format if a human being needs to remember the

password.

7.2 X9.17 Key Generation

The American National Standards Institute has specified a method for

generating a sequence of keys as follows:

s is the initial 64 bit seed

0

g is the sequence of generated 64 bit key quantities

n

k is a random key reserved for generating this key sequence

t is the time at which a key is generated to as fine a resolution

as is available (up to 64 bits).

DES ( K, Q ) is the DES encryption of quantity Q with key K

g = DES ( k, DES ( k, t ) .xor. s )

n n

s = DES ( k, DES ( k, t ) .xor. g )

n+1 n

If g sub n is to be used as a DES key, then every eighth bit should

be adjusted for parity for that use but the entire 64 bit unmodified

g should be used in calculating the next s.

8. Examples of Randomness Required

Below are two examples showing rough calculations of needed

randomness for security. The first is for moderate security

passwords while the second assumes a need for a very high security

cryptographic key.

8.1 Password Generation

Assume that user passwords change once a year and it is desired that

the probability that an adversary could guess the password for a

particular account be less than one in a thousand. Further assume

that sending a password to the system is the only way to try a

password. Then the crucial question is how often an adversary can

try possibilities. Assume that delays have been introduced into a

system so that, at most, an adversary can make one password try every

six seconds. That's 600 per hour or about 15,000 per day or about

5,000,000 tries in a year. Assuming any sort of monitoring, it is

unlikely someone could actually try continuously for a year. In

fact, even if log files are only checked monthly, 500,000 tries is

more plausible before the attack is noticed and steps taken to change

passwords and make it harder to try more passwords.

To have a one in a thousand chance of guessing the password in

500,000 tries implies a universe of at least 500,000,000 passwords or

about 2^29. Thus 29 bits of randomness are needed. This can probably

be achieved using the US DoD recommended inputs for password

generation as it has 8 inputs which probably average over 5 bits of

randomness each (see section 7.1). Using a list of 1000 words, the

password could be expressed as a three word phrase (1,000,000,000

possibilities) or, using case insensitive letters and digits, six

would suffice ((26+10)^6 = 2,176,782,336 possibilities).

For a higher security password, the number of bits required goes up.

To decrease the probability by 1,000 requires increasing the universe

of passwords by the same factor which adds about 10 bits. Thus to

have only a one in a million chance of a password being guessed under

the above scenario would require 39 bits of randomness and a password

that was a four word phrase from a 1000 word list or eight

letters/digits. To go to a one in 10^9 chance, 49 bits of randomness

are needed implying a five word phrase or ten letter/digit password.

In a real system, of course, there are also other factors. For

example, the larger and harder to remember passwords are, the more

likely users are to write them down resulting in an additional risk

of compromise.

8.2 A Very High Security Cryptographic Key

Assume that a very high security key is needed for symmetric

encryption / decryption between two parties. Assume an adversary can

observe communications and knows the algorithm being used. Within

the field of random possibilities, the adversary can try key values

in hopes of finding the one in use. Assume further that brute force

trial of keys is the best the adversary can do.

8.2.1 Effort per Key Trial

How much effort will it take to try each key? For very high security

applications it is best to assume a low value of effort. Even if it

would clearly take tens of thousands of computer cycles or more to

try a single key, there may be some pattern that enables huge blocks

of key values to be tested with much less effort per key. Thus it is

probably best to assume no more than a couple hundred cycles per key.

(There is no clear lower bound on this as computers operate in

parallel on a number of bits and a poor encryption algorithm could

allow many keys or even groups of keys to be tested in parallel.

However, we need to assume some value and can hope that a reasonably

strong algorithm has been chosen for our hypothetical high security

task.)

If the adversary can command a highly parallel processor or a large

network of work stations, 2*10^10 cycles per second is probably a

minimum assumption for availability today. Looking forward just a

couple years, there should be at least an order of magnitude

improvement. Thus assuming 10^9 keys could be checked per second or

3.6*10^11 per hour or 6*10^13 per week or 2.4*10^14 per month is

reasonable. This implies a need for a minimum of 51 bits of

randomness in keys to be sure they cannot be found in a month. Even

then it is possible that, a few years from now, a highly determined

and resourceful adversary could break the key in 2 weeks (on average

they need try only half the keys).

8.2.2 Meet in the Middle Attacks

If chosen or known plain text and the resulting encrypted text are

available, a "meet in the middle" attack is possible if the structure

of the encryption algorithm allows it. (In a known plain text

attack, the adversary knows all or part of the messages being

encrypted, possibly some standard header or trailer fields. In a

chosen plain text attack, the adversary can force some chosen plain

text to be encrypted, possibly by "leaking" an exciting text that

would then be sent by the adversary over an encrypted channel.)

An oversimplified explanation of the meet in the middle attack is as

follows: the adversary can half-encrypt the known or chosen plain

text with all possible first half-keys, sort the output, then half-

decrypt the encoded text with all the second half-keys. If a match

is found, the full key can be assembled from the halves and used to

decrypt other parts of the message or other messages. At its best,

this type of attack can halve the exponent of the work required by

the adversary while adding a large but roughly constant factor of

effort. To be assured of safety against this, a doubling of the

amount of randomness in the key to a minimum of 102 bits is required.

The meet in the middle attack assumes that the cryptographic

algorithm can be decomposed in this way but we can not rule that out

without a deep knowledge of the algorithm. Even if a basic algorithm

is not subject to a meet in the middle attack, an attempt to produce

a stronger algorithm by applying the basic algorithm twice (or two

different algorithms sequentially) with different keys may gain less

added security than would be expected. Such a composite algorithm

would be subject to a meet in the middle attack.

Enormous resources may be required to mount a meet in the middle

attack but they are probably within the range of the national

security services of a major nation. Essentially all nations spy on

other nations government traffic and several nations are believed to

spy on commercial traffic for economic advantage.

8.2.3 Other Considerations

Since we have not even considered the possibilities of special

purpose code breaking hardware or just how much of a safety margin we

want beyond our assumptions above, probably a good minimum for a very

high security cryptographic key is 128 bits of randomness which

implies a minimum key length of 128 bits. If the two parties agree

on a key by Diffie-Hellman exchange [D-H], then in principle only

half of this randomness would have to be supplied by each party.

However, there is probably some correlation between their random

inputs so it is probably best to assume that each party needs to

provide at least 96 bits worth of randomness for very high security

if Diffie-Hellman is used.

This amount of randomness is beyond the limit of that in the inputs

recommended by the US DoD for password generation and could require

user typing timing, hardware random number generation, or other

sources.

It should be noted that key length calculations such at those above

are controversial and depend on various assumptions about the

cryptographic algorithms in use. In some cases, a professional with

a deep knowledge of code breaking techniques and of the strength of

the algorithm in use could be satisfied with less than half of the

key size derived above.

9. Conclusion

Generation of unguessable "random" secret quantities for security use

is an essential but difficult task.

We have shown that hardware techniques to produce such randomness

would be relatively simple. In particular, the volume and quality

would not need to be high and existing computer hardware, such as

disk drives, can be used. Computational techniques are available to

process low quality random quantities from multiple sources or a

larger quantity of such low quality input from one source and produce

a smaller quantity of higher quality, less predictable key material.

In the absence of hardware sources of randomness, a variety of user

and software sources can frequently be used instead with care;

however, most modern systems already have hardware, such as disk

drives or audio input, that could be used to produce high quality

randomness.

Once a sufficient quantity of high quality seed key material (a few

hundred bits) is available, strong computational techniques are

available to produce cryptographically strong sequences of

unpredicatable quantities from this seed material.

10. Security Considerations

The entirety of this document concerns techniques and recommendations

for generating unguessable "random" quantities for use as passwords,

cryptographic keys, and similar security uses.

References

[ASYMMETRIC] - Secure Communications and Asymmetric Cryptosystems,

edited by Gustavus J. Simmons, AAAS Selected Symposium 69, Westview

Press, Inc.

[BBS] - A Simple Unpredictable Pseudo-Random Number Generator, SIAM

Journal on Computing, v. 15, n. 2, 1986, L. Blum, M. Blum, & M. Shub.

[BRILLINGER] - Time Series: Data Analysis and Theory, Holden-Day,

1981, David Brillinger.

[CRC] - C.R.C. Standard Mathematical Tables, Chemical Rubber

Publishing Company.

[CRYPTO1] - Cryptography: A Primer, A Wiley-Interscience Publication,

John Wiley & Sons, 1981, Alan G. Konheim.

[CRYPTO2] - Cryptography: A New Dimension in Computer Data Security,

A Wiley-Interscience Publication, John Wiley & Sons, 1982, Carl H.

Meyer & Stephen M. Matyas.

[CRYPTO3] - Applied Cryptography: Protocols, Algorithms, and Source

Code in C, John Wiley & Sons, 1994, Bruce Schneier.

[DAVIS] - Cryptographic Randomness from Air Turbulence in Disk

Drives, Advances in Cryptology - Crypto '94, Springer-Verlag Lecture

Notes in Computer Science #839, 1984, Don Davis, Ross Ihaka, and

Philip Fenstermacher.

[DES] - Data Encryption Standard, United States of America,

Department of Commerce, National Institute of Standards and

Technology, Federal Information Processing Standard (FIPS) 46-1.

- Data Encryption Algorithm, American National Standards Institute,

ANSI X3.92-1981.

(See also FIPS 112, Password Usage, which includes FORTRAN code for

performing DES.)

[DES MODES] - DES Modes of Operation, United States of America,

Department of Commerce, National Institute of Standards and

Technology, Federal Information Processing Standard (FIPS) 81.

- Data Encryption Algorithm - Modes of Operation, American National

Standards Institute, ANSI X3.106-1983.

[D-H] - New Directions in Cryptography, IEEE Transactions on

Information Technology, November, 1976, Whitfield Diffie and Martin

E. Hellman.

[DoD] - Password Management Guideline, United States of America,

Department of Defense, Computer Security Center, CSC-STD-002-85.

(See also FIPS 112, Password Usage, which incorporates CSC-STD-002-85

as one of its appendices.)

[GIFFORD] - Natural Random Number, MIT/LCS/TM-371, September 1988,

David K. Gifford

[KNUTH] - The Art of Computer Programming, Volume 2: Seminumerical

Algorithms, Chapter 3: Random Numbers. Addison Wesley Publishing

Company, Second Edition 1982, Donald E. Knuth.

[KRAWCZYK] - How to Predict Congruential Generators, Journal of

Algorithms, V. 13, N. 4, December 1992, H. Krawczyk

[MD2] - The MD2 Message-Digest Algorithm, RFC1319, April 1992, B.

Kaliski

[MD4] - The MD4 Message-Digest Algorithm, RFC1320, April 1992, R.

Rivest

[MD5] - The MD5 Message-Digest Algorithm, RFC1321, April 1992, R.

Rivest

[PEM] - RFCs 1421 through 1424:

- RFC1424, Privacy Enhancement for Internet Electronic Mail: Part

IV: Key Certification and Related Services, 02/10/1993, B. Kaliski

- RFC1423, Privacy Enhancement for Internet Electronic Mail: Part

III: Algorithms, Modes, and Identifiers, 02/10/1993, D. Balenson

- RFC1422, Privacy Enhancement for Internet Electronic Mail: Part

II: Certificate-Based Key Management, 02/10/1993, S. Kent

- RFC1421, Privacy Enhancement for Internet Electronic Mail: Part I:

Message Encryption and Authentication Procedures, 02/10/1993, J. Linn

[SHANNON] - The Mathematical Theory of Communication, University of

Illinois Press, 1963, Claude E. Shannon. (originally from: Bell

System Technical Journal, July and October 1948)

[SHIFT1] - Shift Register Sequences, Aegean Park Press, Revised

Edition 1982, Solomon W. Golomb.

[SHIFT2] - Cryptanalysis of Shift-Register Generated Stream Cypher

Systems, Aegean Park Press, 1984, Wayne G. Barker.

[SHS] - Secure Hash Standard, United States of American, National

Institute of Science and Technology, Federal Information Processing

Standard (FIPS) 180, April 1993.

[STERN] - Secret Linear Congruential Generators are not

Cryptograhically Secure, Proceedings of IEEE STOC, 1987, J. Stern.

[VON NEUMANN] - Various techniques used in connection with random

digits, von Neumann's Collected Works, Vol. 5, Pergamon Press, 1963,

J. von Neumann.

Authors' Addresses

Donald E. Eastlake 3rd

Digital Equipment Corporation

550 King Street, LKG2-1/BB3

Littleton, MA 01460

Phone: +1 508 486 6577(w) +1 508 287 4877(h)

EMail: dee@lkg.dec.com

Stephen D. Crocker

CyberCash Inc.

2086 Hunters Crest Way

Vienna, VA 22181

Phone: +1 703-620-1222(w) +1 703-391-2651 (fax)

EMail: crocker@cybercash.com

Jeffrey I. Schiller

Massachusetts Institute of Technology

77 Massachusetts Avenue

Cambridge, MA 02139

Phone: +1 617 253 0161(w)

EMail: jis@mit.edu

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有