分享
 
 
 

RFC2759 - Microsoft PPP CHAP Extensions, Version 2

王朝other·作者佚名  2008-05-31
窄屏简体版  字體: |||超大  

Network Working Group G. Zorn

Request for Comments: 2759 Microsoft Corporation

Category: Informational January 2000

Microsoft PPP CHAP Extensions, Version 2

Status of this Memo

This memo provides information for the Internet community. It does

not specify an Internet standard of any kind. Distribution of this

memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

The Point-to-Point Protocol (PPP) [1] provides a standard method for

transporting multi-protocol datagrams over point-to-point links. PPP

defines an extensible Link Control Protocol and a family of Network

Control Protocols (NCPs) for establishing and configuring different

network-layer protocols.

This document describes version two of Microsoft's PPP CHAP dialect

(MS-CHAP-V2). MS-CHAP-V2 is similar to, but incompatible with, MS-

CHAP version one (MS-CHAP-V1, described in [9]). In particular,

certain protocol fields have been deleted or reused but with

different semantics. In addition, MS-CHAP-V2 features mutual

authentication.

The algorithms used in the generation of various MS-CHAP-V2 protocol

fields are described in section 8. Negotiation and hash generation

examples are provided in section 9.

Specification of Requirements

In this document, the key Words "MAY", "MUST, "MUST NOT", "optional",

"recommended", "SHOULD", and "SHOULD NOT" are to be interpreted as

described in [3].

Table of Contents

1. IntrodUCtion . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. LCP Configuration . . . . . . . . . . . . . . . . . . . . . . . 3

3. Challenge Packet . . . . . . . . . . . . . . . . . . . . . . . 3

4. Response Packet . . . . . . . . . . . . . . . . . . . . . . . . 4

5. Success Packet . . . . . . . . . . . . . . . . . . . . . . . . 4

6. Failure Packet . . . . . . . . . . . . . . . . . . . . . . . . 5

7. Change-Password Packet . . . . . . . . . . . . . . . . . . . . 6

8. Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8.1. GenerateNTResponse() . . . . . . . . . . . . . . . . . . . . 7

8.2. ChallengeHash() . . . . . . . . . . . . . . . . . . . . . . . 8

8.3. NtPasswordHash() . . . . . . . . . . . . . . . . . . . . . . 9

8.4. HashNtPasswordHash() . . . . . . . . . . . . . . . . . . . . 9

8.5. ChallengeResponse() . . . . . . . . . . . . . . . . . . . . . 9

8.6. DesEncrypt() . . . . . . . . . . . . . . . . . . . . . . . . 10

8.7. GenerateAuthenticatorResponse() . . . . . . . . . . . . . . . 10

8.8. CheckAuthenticatorResponse() . . . . . . . . . . . . . . . . 12

8.9. NewPasswordEncryptedWithOldNtPasswordHash() . . . . . . . . . 12

8.10. EncryptPwBlockWithPasswordHash() . . . . . . . . . . . . . . 13

8.11. Rc4Encrypt() . . . . . . . . . . . . . . . . . . . . . . . . 13

8.12. OldNtPasswordHashEncryptedWithNewNtPasswordHash() . . . . . 14

8.13. NtPasswordHashEncryptedWithBlock() . . . . . . . . . . . . . 14

9. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

9.1. Negotiation Examples . . . . . . . . . . . . . . . . . . . . 14

9.1.1. Successful authentication . . . . . . . . . . . . . . . . . 15

9.1.2. Authenticator authentication failure . . . . . . . . . . . 15

9.1.3. Failed authentication with no retry allowed . . . . . . . . 15

9.1.4. Successful authentication after retry . . . . . . . . . . . 15

9.1.5. Failed hack attack with 3 attempts allowed . . . . . . . . 15

9.1.6. Successful authentication with password change . . . . . . 16

9.1.7. Successful authentication with retry and password change. . 16

9.2. Hash Example . . . . . . . . . . . . . . . . . . . . . . . . 16

9.3. Example of DES Key Generation . . . . . . . . . . . . . . . . 17

10. Security Considerations . . . . . . . . . . . . . . . . . . . 17

11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 18

12. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 19

13. Author's Address . . . . . . . . . . . . . . . . . . . . . . . 19

14. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 20

1. Introduction

Where possible, MS-CHAP-V2 is consistent with both MS-CHAP-V1 and

standard CHAP. Briefly, the differences between MS-CHAP-V2 and MS-

CHAP-V1 are:

* MS-CHAP-V2 is enabled by negotiating CHAP Algorithm 0x81 in LCP

option 3, Authentication Protocol.

* MS-CHAP-V2 provides mutual authentication between peers by

piggybacking a peer challenge on the Response packet and an

authenticator response on the Success packet.

* The calculation of the "Windows NT compatible challenge response"

sub-field in the Response packet has been changed to include the

peer challenge and the user name.

* In MS-CHAP-V1, the "LAN Manager compatible challenge response"

sub-field was always sent in the Response packet. This field has

been replaced in MS-CHAP-V2 by the Peer-Challenge field.

* The format of the Message field in the Failure packet has been

changed.

* The Change Password (version 1) and Change Password (version 2)

packets are no longer supported. They have been replaced with a

single Change-Password packet.

2. LCP Configuration

The LCP configuration for MS-CHAP-V2 is identical to that for

standard CHAP, except that the Algorithm field has value 0x81, rather

than the MD5 value 0x05. PPP implementations which do not support

MS-CHAP-V2, but correctly implement LCP Config-Rej, should have no

problem dealing with this non-standard option.

3. Challenge Packet

The MS-CHAP-V2 Challenge packet is identical in format to the

standard CHAP Challenge packet.

MS-CHAP-V2 authenticators send an 16-octet challenge Value field.

Peers need not duplicate Microsoft's algorithm for selecting the 16-

octet value, but the standard guidelines on randomness [1,2,7] SHOULD

be observed.

Microsoft authenticators do not currently provide information in the

Name field. This may change in the future.

4. Response Packet

The MS-CHAP-V2 Response packet is identical in format to the standard

CHAP Response packet. However, the Value field is sub-formatted

differently as follows:

16 octets: Peer-Challenge

8 octets: Reserved, must be zero

24 octets: NT-Response

1 octet : Flags

The Peer-Challenge field is a 16-octet random number. As the name

implies, it is generated by the peer and is used in the calculation

of the NT-Response field, below. Peers need not duplicate

Microsoft's algorithm for selecting the 16-octet value, but the

standard guidelines on randomness [1,2,7] SHOULD be observed.

The NT-Response field is an encoded function of the password, the

user name, the contents of the Peer-Challenge field and the received

challenge as output by the routine GenerateNTResponse() (see section

8.1, below). The Windows NT password is a string of 0 to

(theoretically) 256 case-sensitive Unicode [8] characters. Current

versions of Windows NT limit passwords to 14 characters, mainly for

compatibility reasons; this may change in the future. When computing

the NT-Response field contents, only the user name is used, without

any associated Windows NT domain name. This is true regardless of

whether a Windows NT domain name is present in the Name field (see

below).

The Flag field is reserved for future use and MUST be zero.

The Name field is a string of 0 to (theoretically) 256 case-sensitive

ASCII characters which identifies the peer's user account name. The

Windows NT domain name may prefix the user's account name (e.g.

"BIGCO\johndoe" where "BIGCO" is a Windows NT domain containing the

user account "johndoe"). If a domain is not provided, the backslash

should also be omitted, (e.g. "johndoe").

5. Success Packet

The Success packet is identical in format to the standard CHAP

Success packet. However, the Message field contains a 42-octet

authenticator response string and a printable message. The format of

the message field is illustrated below.

"S=<auth_string> M=<message>"

The <auth_string> quantity is a 20 octet number encoded in ASCII as

40 hexadecimal digits. The hexadecimal digits A-F (if present) MUST

be uppercase. This number is derived from the challenge from the

Challenge packet, the Peer-Challenge and NT-Response fields from the

Response packet, and the peer password as output by the routine

GenerateAuthenticatorResponse() (see section 8.7, below). The

authenticating peer MUST verify the authenticator response when a

Success packet is received. The method for verifying the

authenticator is described in section 8.8, below. If the

authenticator response is either missing or incorrect, the peer MUST

end the session.

The <message> quantity is human-readable text in the appropriate

charset and language [12].

6. Failure Packet

The Failure packet is identical in format to the standard CHAP

Failure packet. There is, however, formatted text stored in the

Message field which, contrary to the standard CHAP rules, does affect

the operation of the protocol. The Message field format is:

"E=eeeeeeeeee R=r C=cccccccccccccccccccccccccccccccc V=vvvvvvvvvv

M=<msg>"

where

The "eeeeeeeeee" is the ASCII representation of a decimal error

code (need not be 10 digits) corresponding to one of those listed

below, though implementations should deal with codes not on this

list gracefully.

646 ERROR_RESTRICTED_LOGON_HOURS

647 ERROR_ACCT_DISABLED

648 ERROR_PASSWD_EXPIRED

649 ERROR_NO_DIALIN_PERMISSION

691 ERROR_AUTHENTICATION_FAILURE

709 ERROR_CHANGING_PASSWORD

The "r" is an ASCII flag set to '1' if a retry is allowed, and '0'

if not. When the authenticator sets this flag to '1' it disables

short timeouts, expecting the peer to prompt the user for new

credentials and resubmit the response.

The "cccccccccccccccccccccccccccccccc" is the ASCII representation

of a hexadecimal challenge value. This field MUST be exactly 32

octets long and MUST be present.

The "vvvvvvvvvv" is the ASCII representation of a decimal version

code (need not be 10 digits) indicating the password changing

protocol version supported on the server. For MS-CHAP-V2, this

value SHOULD always be 3.

<msg> is human-readable text in the appropriate charset and

language [12].

7. Change-Password Packet

The Change-Password packet does not appear in either standard CHAP or

MS-CHAP-V1. It allows the peer to change the password on the account

specified in the preceding Response packet. The Change-Password

packet should be sent only if the authenticator reports

ERROR_PASSWD_EXPIRED (E=648) in the Message field of the Failure

packet.

This packet type is supported by recent versions of Windows NT 4.0,

Windows 95 and Windows 98. It is not supported by Windows NT 3.5,

Windows NT 3.51, or early versions of Windows NT 4.0, Windows 95 and

Windows 98.

The format of this packet is as follows:

1 octet : Code

1 octet : Identifier

2 octets : Length

516 octets : Encrypted-Password

16 octets : Encrypted-Hash

16 octets : Peer-Challenge

8 octets : Reserved

24 octets : NT-Response

2-octet : Flags

Code

7

Identifier

The Identifier field is one octet and aids in matching requests

and replies. The value is the Identifier of the received Failure

packet to which this packet responds plus 1.

Length

586

Encrypted-Password

This field contains the PWBLOCK form of the new Windows NT

password encrypted with the old Windows NT password hash, as

output by the NewPasswordEncryptedWithOldNtPasswordHash() routine

(see section 8.9, below).

Encrypted-Hash

This field contains the old Windows NT password hash encrypted

with the new Windows NT password hash, as output by the

OldNtPasswordHashEncryptedWithNewNtPasswordHash() routine (see

section 8.12, below).

Peer-Challenge

A 16-octet random quantity, as described in the Response packet

description.

Reserved

8 octets, must be zero.

NT-Response

The NT-Response field (as described in the Response packet

description), but calculated on the new password and the challenge

received in the Failure packet.

Flags

This field is two octets in length. It is a bit field of option

flags where 0 is the least significant bit of the 16-bit quantity.

The format of this field is illustrated in the following diagram:

1

5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Bits 0-15

Reserved, always clear (0).

8. Pseudocode

The routines mentioned in the text above are described in pseudocode

in the following sections.

8.1. GenerateNTResponse()

GenerateNTResponse(

IN 16-octet AuthenticatorChallenge,

IN 16-octet PeerChallenge,

IN 0-to-256-char UserName,

IN 0-to-256-unicode-char Password,

OUT 24-octet Response )

{

8-octet Challenge

16-octet PasswordHash

ChallengeHash( PeerChallenge, AuthenticatorChallenge, UserName,

giving Challenge)

NtPasswordHash( Password, giving PasswordHash )

ChallengeResponse( Challenge, PasswordHash, giving Response )

}

8.2. ChallengeHash()

ChallengeHash(

IN 16-octet PeerChallenge,

IN 16-octet AuthenticatorChallenge,

IN 0-to-256-char UserName,

OUT 8-octet Challenge

{

/*

* SHAInit(), SHAUpdate() and SHAFinal() functions are an

* implementation of Secure Hash Algorithm (SHA-1) [11]. These are

* available in public domain or can be licensed from

* RSA Data Security, Inc.

*/

SHAInit(Context)

SHAUpdate(Context, PeerChallenge, 16)

SHAUpdate(Context, AuthenticatorChallenge, 16)

/*

* Only the user name (as presented by the peer and

* excluding any prepended domain name)

* is used as input to SHAUpdate().

*/

SHAUpdate(Context, UserName, strlen(Username))

SHAFinal(Context, Digest)

memcpy(Challenge, Digest, 8)

}

8.3. NtPasswordHash()

NtPasswordHash(

IN 0-to-256-unicode-char Password,

OUT 16-octet PasswordHash )

{

/*

* Use the MD4 algorithm [5] to irreversibly hash Password

* into PasswordHash. Only the password is hashed without

* including any terminating 0.

*/

}

8.4. HashNtPasswordHash()

HashNtPasswordHash(

IN 16-octet PasswordHash,

OUT 16-octet PasswordHashHash )

{

/*

* Use the MD4 algorithm [5] to irreversibly hash

* PasswordHash into PasswordHashHash.

*/

}

8.5. ChallengeResponse()

ChallengeResponse(

IN 8-octet Challenge,

IN 16-octet PasswordHash,

OUT 24-octet Response )

{

Set ZPasswordHash to PasswordHash zero-padded to 21 octets

DesEncrypt( Challenge,

1st 7-octets of ZPasswordHash,

giving 1st 8-octets of Response )

DesEncrypt( Challenge,

2nd 7-octets of ZPasswordHash,

giving 2nd 8-octets of Response )

DesEncrypt( Challenge,

3rd 7-octets of ZPasswordHash,

giving 3rd 8-octets of Response )

}

8.6. DesEncrypt()

DesEncrypt(

IN 8-octet Clear,

IN 7-octet Key,

OUT 8-octet Cypher )

{

/*

* Use the DES encryption algorithm [4] in ECB mode [10]

* to encrypt Clear into Cypher such that Cypher can

* only be decrypted back to Clear by providing Key.

* Note that the DES algorithm takes as input a 64-bit

* stream where the 8th, 16th, 24th, etc. bits are

* parity bits ignored by the encrypting algorithm.

* Unless you write your own DES to accept 56-bit input

* without parity, you will need to insert the parity bits

* yourself.

*/

}

8.7. GenerateAuthenticatorResponse()

GenerateAuthenticatorResponse(

IN 0-to-256-unicode-char Password,

IN 24-octet NT-Response,

IN 16-octet PeerChallenge,

IN 16-octet AuthenticatorChallenge,

IN 0-to-256-char UserName,

OUT 42-octet AuthenticatorResponse )

{

16-octet PasswordHash

16-octet PasswordHashHash

8-octet Challenge

/*

* "Magic" constants used in response generation

*/

Magic1[39] =

{0x4D, 0x61, 0x67, 0x69, 0x63, 0x20, 0x73, 0x65, 0x72, 0x76,

0x65, 0x72, 0x20, 0x74, 0x6F, 0x20, 0x63, 0x6C, 0x69, 0x65,

0x6E, 0x74, 0x20, 0x73, 0x69, 0x67, 0x6E, 0x69, 0x6E, 0x67,

0x20, 0x63, 0x6F, 0x6E, 0x73, 0x74, 0x61, 0x6E, 0x74};

Magic2[41] =

{0x50, 0x61, 0x64, 0x20, 0x74, 0x6F, 0x20, 0x6D, 0x61, 0x6B,

0x65, 0x20, 0x69, 0x74, 0x20, 0x64, 0x6F, 0x20, 0x6D, 0x6F,

0x72, 0x65, 0x20, 0x74, 0x68, 0x61, 0x6E, 0x20, 0x6F, 0x6E,

0x65, 0x20, 0x69, 0x74, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6F,

0x6E};

/*

* Hash the password with MD4

*/

NtPasswordHash( Password, giving PasswordHash )

/*

* Now hash the hash

*/

HashNtPasswordHash( PasswordHash, giving PasswordHashHash)

SHAInit(Context)

SHAUpdate(Context, PasswordHashHash, 16)

SHAUpdate(Context, NTResponse, 24)

SHAUpdate(Context, Magic1, 39)

SHAFinal(Context, Digest)

ChallengeHash( PeerChallenge, AuthenticatorChallenge, UserName,

giving Challenge)

SHAInit(Context)

SHAUpdate(Context, Digest, 20)

SHAUpdate(Context, Challenge, 8)

SHAUpdate(Context, Magic2, 41)

SHAFinal(Context, Digest)

/*

* Encode the value of 'Digest' as "S=" followed by

* 40 ASCII hexadecimal digits and return it in

* AuthenticatorResponse.

* For example,

* "S=0123456789ABCDEF0123456789ABCDEF01234567"

*/

}

8.8. CheckAuthenticatorResponse()

CheckAuthenticatorResponse(

IN 0-to-256-unicode-char Password,

IN 24-octet NtResponse,

IN 16-octet PeerChallenge,

IN 16-octet AuthenticatorChallenge,

IN 0-to-256-char UserName,

IN 42-octet ReceivedResponse,

OUT Boolean ResponseOK )

{

20-octet MyResponse

set ResponseOK = FALSE

GenerateAuthenticatorResponse( Password, NtResponse, PeerChallenge,

AuthenticatorChallenge, UserName,

giving MyResponse)

if (MyResponse = ReceivedResponse) then set ResponseOK = TRUE

return ResponseOK

}

8.9. NewPasswordEncryptedWithOldNtPasswordHash()

datatype-PWBLOCK

{

256-unicode-char Password

4-octets PasswordLength

}

NewPasswordEncryptedWithOldNtPasswordHash(

IN 0-to-256-unicode-char NewPassword,

IN 0-to-256-unicode-char OldPassword,

OUT datatype-PWBLOCK EncryptedPwBlock )

{

NtPasswordHash( OldPassword, giving PasswordHash )

EncryptPwBlockWithPasswordHash( NewPassword,

PasswordHash,

giving EncryptedPwBlock )

}

8.10. EncryptPwBlockWithPasswordHash()

EncryptPwBlockWithPasswordHash(

IN 0-to-256-unicode-char Password,

IN 16-octet PasswordHash,

OUT datatype-PWBLOCK PwBlock )

{

Fill ClearPwBlock with random octet values

PwSize = lstrlenW( Password ) * sizeof( unicode-char )

PwOffset = sizeof( ClearPwBlock.Password ) - PwSize

Move PwSize octets to (ClearPwBlock.Password + PwOffset ) from

Password

ClearPwBlock.PasswordLength = PwSize

Rc4Encrypt( ClearPwBlock,

sizeof( ClearPwBlock ),

PasswordHash,

sizeof( PasswordHash ),

giving PwBlock )

}

8.11. Rc4Encrypt()

Rc4Encrypt(

IN x-octet Clear,

IN integer ClearLength,

IN y-octet Key,

IN integer KeyLength,

OUT x-octet Cypher )

{

/*

* Use the RC4 encryption algorithm [6] to encrypt Clear of

* length ClearLength octets into a Cypher of the same length

* such that the Cypher can only be decrypted back to Clear

* by providing a Key of length KeyLength octets.

*/

}

8.12. OldNtPasswordHashEncryptedWithNewNtPasswordHash()

OldNtPasswordHashEncryptedWithNewNtPasswordHash(

IN 0-to-256-unicode-char NewPassword,

IN 0-to-256-unicode-char OldPassword,

OUT 16-octet EncryptedPasswordHash )

{

NtPasswordHash( OldPassword, giving OldPasswordHash )

NtPasswordHash( NewPassword, giving NewPasswordHash )

NtPasswordHashEncryptedWithBlock( OldPasswordHash,

NewPasswordHash,

giving EncryptedPasswordHash )

}

8.13. NtPasswordHashEncryptedWithBlock()

NtPasswordHashEncryptedWithBlock(

IN 16-octet PasswordHash,

IN 16-octet Block,

OUT 16-octet Cypher )

{

DesEncrypt( 1st 8-octets PasswordHash,

1st 7-octets Block,

giving 1st 8-octets Cypher )

DesEncrypt( 2nd 8-octets PasswordHash,

2nd 7-octets Block,

giving 2nd 8-octets Cypher )

}

9. Examples

The following sections include protocol negotiation and hash

generation examples.

9.1. Negotiation Examples

Here are some examples of typical negotiations. The peer is on the

left and the authenticator is on the right.

The packet sequence ID is incremented on each authentication retry

response and on the change password response. All cases where the

packet sequence ID is updated are noted below.

Response retry is never allowed after Change Password. Change

Password may occur after response retry.

9.1.1. Successful authentication

<- Authenticator Challenge

Peer Response/Challenge ->

<- Success/Authenticator Response

(Authenticator Response verification succeeds, call continues)

9.1.2. Authenticator authentication failure

<- Authenticator Challenge

Peer Response/Challenge ->

<- Success/Authenticator Response

(Authenticator Response verification fails, peer disconnects)

9.1.3. Failed authentication with no retry allowed

<- Authenticator Challenge

Peer Response/Challenge ->

<- Failure (E=691 R=0)

(Authenticator disconnects)

9.1.4. Successful authentication after retry

<- Authenticator Challenge

Peer Response/Challenge ->

<- Failure (E=691 R=1), disable short timeout

Response (++ID) to challenge in failure message ->

<- Success/Authenticator Response

(Authenticator Response verification succeeds, call continues)

9.1.5. Failed hack attack with 3 attempts allowed

<- Authenticator Challenge

Peer Response/Challenge ->

<- Failure (E=691 R=1), disable short timeout

Response (++ID) to challenge in Failure message ->

<- Failure (E=691 R=1), disable short timeout

Response (++ID) to challenge in Failure message ->

<- Failure (E=691 R=0)

9.1.6. Successful authentication with password change

<- Authenticator Challenge

Peer Response/Challenge ->

<- Failure (E=648 R=0 V=3), disable short

timeout

ChangePassword (++ID) to challenge in Failure message ->

<- Success/Authenticator Response

(Authenticator Response verification succeeds, call continues)

9.1.7. Successful authentication with retry and password change

<- Authenticator Challenge

Peer Response/Challenge ->

<- Failure (E=691 R=1), disable short timeout

Response (++ID) to first challenge+23 ->

<- Failure (E=648 R=0 V=2), disable short

timeout

ChangePassword (++ID) to first challenge+23 ->

<- Success/Authenticator Response

(Authenticator Response verification succeeds, call continues)

9.2. Hash Example

Intermediate values for user name "User" and password "clientPass".

All numeric values are hexadecimal.

0-to-256-char UserName:

55 73 65 72

0-to-256-unicode-char Password:

63 00 6C 00 69 00 65 00 6E 00 74 00 50 00 61 00 73 00 73 00

16-octet AuthenticatorChallenge:

5B 5D 7C 7D 7B 3F 2F 3E 3C 2C 60 21 32 26 26 28

16-octet PeerChallenge:

21 40 23 24 25 5E 26 2A 28 29 5F 2B 3A 33 7C 7E

8-octet Challenge:

D0 2E 43 86 BC E9 12 26

16-octet PasswordHash:

44 EB BA 8D 53 12 B8 D6 11 47 44 11 F5 69 89 AE

24 octet NT-Response:

82 30 9E CD 8D 70 8B 5E A0 8F AA 39 81 CD 83 54 42 33 11 4A 3D 85 D6 DF

16-octet PasswordHashHash:

41 C0 0C 58 4B D2 D9 1C 40 17 A2 A1 2F A5 9F 3F

42-octet AuthenticatorResponse:

"S=407A5589115FD0D6209F510FE9C04566932CDA56"

9.3. Example of DES Key Generation

DES uses 56-bit keys, expanded to 64 bits by the insertion of parity

bits. After the parity of the key has been fixed, every eighth bit

is a parity bit and the number of bits that are set (1) in each octet

is odd; i.e., odd parity. Note that many DES engines do not check

parity, however, simply stripping the parity bits. The following

example illustrates the values resulting from the use of the password

"MyPw" to generate a pair of DES keys (e.g., for use in the

NtPasswordHashEncryptedWithBlock() described in section 8.13).

0-to-256-unicode-char Password:

4D 79 50 77

16-octet PasswordHash:

FC 15 6A F7 ED CD 6C 0E DD E3 33 7D 42 7F 4E AC

First "raw" DES key (initial 7 octets of password hash):

FC 15 6A F7 ED CD 6C

First parity-corrected DES key (eight octets):

FD 0B 5B 5E 7F 6E 34 D9

Second "raw" DES key (second 7 octets of password hash)

0E DD E3 33 7D 42 7F

Second parity-corrected DES key (eight octets):

0E 6E 79 67 37 EA 08 FE

10. Security Considerations

As an implementation detail, the authenticator SHOULD limit the

number of password retries allowed to make brute-force password

guessing attacks more difficult.

11. References

[1] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC

1661, July 1994.

[2] Simpson, W., "PPP Challenge Handshake Authentication Protocol

(CHAP)", RFC1994, August 1996.

[3] Bradner, S., "Key words for use in RFCs to Indicate Requirement

Levels", BCP 14, RFC2119, March 1997.

[4] "Data Encryption Standard (DES)", Federal Information Processing

Standard Publication 46-2, National Institute of Standards and

Technology, December 1993.

[5] Rivest, R., "MD4 Message Digest Algorithm", RFC1320, April

1992.

[6] RC4 is a proprietary encryption algorithm available under

license from RSA Data Security Inc. For licensing information,

contact:

RSA Data Security, Inc.

100 Marine Parkway

Redwood City, CA 94065-1031

[7] Eastlake, D., Crocker, S. and J. Schiller, "Randomness

Recommendations for Security", RFC1750, December 1994.

[8] "The Unicode Standard, Version 2.0", The Unicode Consortium,

Addison-Wesley, 1996. ISBN 0-201-48345-9.

[9] Zorn, G. and Cobb, S., "Microsoft PPP CHAP Extensions", RFC

2433, October 1998.

[10] "DES Modes of Operation", Federal Information Processing

Standards Publication 81, National Institute of Standards and

Technology, December 1980.

[11] "Secure Hash Standard", Federal Information Processing Standards

Publication 180-1, National Institute of Standards and

Technology, April 1995.

[12] Zorn, G., "PPP LCP Internationalization Configuration Option",

RFC2484, January 1999.

12. Acknowledgements

Thanks (in no particular order) to Bruce Johnson, Tony Bell, Paul

Leach, Terence Spies, Dan Simon, Narendra Gidwani, Gurdeep Singh

Pall, Jody Terrill, Brad Robel-Forrest, and Joe Davies for useful

suggestions and feedback.

13. Author's Address

Questions about this memo can also be directed to:

Glen Zorn

Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052

Phone: +1 425 703 1559

Fax: +1 425 936 7329

EMail: gwz@acm.org

14. Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to

others, and derivative works that comment on or otherwise explain it

or assist in its implementation may be prepared, copied, published

and distributed, in whole or in part, without restriction of any

kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this

document itself may not be modified in any way, such as by removing

the copyright notice or references to the Internet Society or other

Internet organizations, except as needed for the purpose of

developing Internet standards in which case the procedures for

copyrights defined in the Internet Standards process must be

followed, or as required to translate it into languages other than

English.

The limited permissions granted above are perpetual and will not be

revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an

"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFCEditor function is currently provided by the

Internet Society.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有