分享
 
 
 

RFC2741 - Agent Extensibility (AgentX) Protocol Version 1

王朝other·作者佚名  2008-05-31
窄屏简体版  字體: |||超大  

Network Working Group M. Daniele

Request for Comments: 2741 Compaq Computer Corporation

Obsoletes: 2257 B. Wijnen

Category: Standards Track T.J. Watson Research Center, IBM Corp.

M. Ellison, Ed.

Ellison Software Consulting, Inc.

D. Francisco. Ed.

Cisco Systems, Inc.

January 2000

Agent Extensibility (AgentX) Protocol

Version 1

Status of this Memo

This document specifies an Internet standards track protocol for the

Internet community, and requests discussion and suggestions for

improvements. Please refer to the current edition of the "Internet

Official Protocol Standards" (STD 1) for the standardization state

and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

This memo defines a standardized framework for extensible SNMP

agents. It defines processing entities called master agents and

subagents, a protocol (AgentX) used to communicate between them, and

the elements of procedure by which the extensible agent processes

SNMP protocol messages. This memo obsoletes RFC2257.

Table of Contents

1. IntrodUCtion.....................................................4

2. The SNMP Management Framework....................................4

2.1. A Note on Terminology........................................5

3. Extending the MIB................................................5

3.1. Motivation for AgentX........................................6

4. AgentX Framework.................................................6

4.1. AgentX Roles.................................................7

4.2. Applicability................................................8

4.3. Design Features of AgentX....................................9

4.4. Non-Goals...................................................10

5. AgentX Encodings................................................11

5.1. Object Identifier...........................................11

5.2. SearchRange.................................................13

5.3. Octet String................................................14

5.4. Value Representation........................................15

6. Protocol Definitions............................................17

6.1. AgentX PDU Header...........................................17

6.1.1. Context.................................................20

6.2. AgentX PDUs.................................................20

6.2.1. The agentx-Open-PDU.....................................20

6.2.2. The agentx-Close-PDU....................................22

6.2.3. The agentx-Register-PDU.................................23

6.2.4. The agentx-Unregister-PDU...............................27

6.2.5. The agentx-Get-PDU......................................29

6.2.6. The agentx-GetNext-PDU..................................30

6.2.7. The agentx-GetBulk-PDU..................................32

6.2.8. The agentx-TestSet-PDU..................................34

6.2.9. The agentx-CommitSet, -UndoSet, -CleanupSet PDUs........35

6.2.10. The agentx-Notify-PDU..................................36

6.2.11. The agentx-Ping-PDU....................................37

6.2.12. The agentx-IndexAllocate-PDU...........................37

6.2.13. The agentx-IndexDeallocate-PDU.........................38

6.2.14. The agentx-AddAgentCaps-PDU............................39

6.2.15. The agentx-RemoveAgentCaps-PDU.........................41

6.2.16. The agentx-Response-PDU................................43

7. Elements of Procedure...........................................45

7.1. Processing AgentX Administrative Messages...................45

7.1.1. Processing the agentx-Open-PDU..........................46

7.1.2. Processing the agentx-IndexAllocate-PDU.................47

7.1.3. Processing the agentx-IndexDeallocate-PDU...............49

7.1.4. Processing the agentx-Register-PDU......................50

7.1.4.1. Handling Duplicate and Overlapping SuBTrees.........50

7.1.4.2. Registering Stuff...................................51

7.1.4.2.1. Registration Priority...........................51

7.1.4.2.2. Index Allocation................................51

7.1.4.2.3. Examples........................................53

7.1.5. Processing the agentx-Unregister-PDU....................55

7.1.6. Processing the agentx-AddAgentCaps-PDU..................55

7.1.7. Processing the agentx-RemoveAgentCaps-PDU...............55

7.1.8. Processing the agentx-Close-PDU.........................56

7.1.9. Detecting Connection Loss...............................56

7.1.10. Processing the agentx-Notify-PDU.......................56

7.1.11. Processing the agentx-Ping-PDU.........................57

7.2. Processing Received SNMP Protocol Messages..................58

7.2.1. Dispatching AgentX PDUs.................................58

7.2.1.1. agentx-Get-PDU......................................61

7.2.1.2. agentx-GetNext-PDU..................................61

7.2.1.3. agentx-GetBulk-PDU..................................62

7.2.1.4. agentx-TestSet-PDU..................................63

7.2.1.5. Dispatch............................................64

7.2.2. Subagent Processing.....................................64

7.2.3. Subagent Processing of agentx-Get, GetNext, GetBulk-PDUs65

7.2.3.1. Subagent Processing of the agentx-Get-PDU...........65

7.2.3.2. Subagent Processing of the agentx-GetNext-PDU.......66

7.2.3.3. Subagent Processing of the agentx-GetBulk-PDU.......66

7.2.4. Subagent Processing of agentx-TestSet, -CommitSet,

-UndoSet, -CleanupSet-PDUs..............................67

7.2.4.1. Subagent Processing of the agentx-TestSet-PDU.......68

7.2.4.2. Subagent Processing of the agentx-CommitSet-PDU.....69

7.2.4.3. Subagent Processing of the agentx-UndoSet-PDU.......69

7.2.4.4. Subagent Processing of the agentx-CleanupSet-PDU....70

7.2.5. Master Agent Processing of AgentX Responses.............70

7.2.5.1. Common Processing of All AgentX Response PDUs.......70

7.2.5.2. Processing of Responses to agentx-Get-PDUs..........70

7.2.5.3. Processing of Responses to agentx-GetNext-PDU and

agentx-GetBulk-PDU..................................71

7.2.5.4. Processing of Responses to agentx-TestSet-PDUs......72

7.2.5.5. Processing of Responses to agentx-CommitSet-PDUs....73

7.2.5.6. Processing of Responses to agentx-UndoSet-PDUs......74

7.2.6. Sending the SNMP Response-PDU...........................74

7.2.7. MIB Views...............................................74

7.3. State Transitions...........................................75

7.3.1. Set Transaction States..................................75

7.3.2. Transport Connection States.............................77

7.3.3. Session States..........................................78

8. Transport Mappings..............................................79

8.1. AgentX over TCP.............................................79

8.1.1. Well-known Values.......................................79

8.1.2. Operation...............................................79

8.2. AgentX over UNIX-domain Sockets.............................80

8.2.1. Well-known Values.......................................80

8.2.2. Operation...............................................80

9. Security Considerations.........................................81

10. Acknowledgements...............................................82

11. Authors' and Editor's Addresses................................83

12. References.....................................................84

13. Notices........................................................86

Appendix A. Changes relative to RFC2257 ..........................87

Full Copyright Statement ..........................................91

1. Introduction

This memo defines a standardized framework for extensible SNMP

agents. It defines processing entities called master agents and

subagents, a protocol (AgentX) used to communicate between them, and

the elements of procedure by which the extensible agent processes

SNMP protocol messages.

This memo obsoletes RFC2257. It is worth noting that most of the

changes are for the purpose of clarification. The only changes

affecting AgentX protocol messages on the wire are:

- The agentx-Notify-PDU and agentx-Close-PDU now generate an

agentx-Response-PDU

- Three new error codes are available: parseFailed(266),

requestDenied(267), and processingError(268)

Appendix A provides a detailed list of changes relative to RFC2257.

The key Words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [27].

2. The SNMP Management Framework

The SNMP Management Framework presently consists of five major

components:

An overall architecture, described in RFC2571 [1].

Mechanisms for describing and naming objects and events for the

purpose of management. The first version of this Structure of

Management Information (SMI) is called SMIv1 and described in STD 16,

RFC1155 [2], STD 16, RFC1212 [3] and RFC1215 [4]. The second

version, called SMIv2, is described in STD 58, RFC2578 [5], STD 58,

RFC2579 [6] and STD 58, RFC2580 [7].

Message protocols for transferring management information. The first

version of the SNMP message protocol is called SNMPv1 and described

in STD 15, RFC1157 [8]. A second version of the SNMP message

protocol, which is not an Internet standards track protocol, is

called SNMPv2c and described in RFC1901 [9] and RFC1906 [10]. The

third version of the message protocol is called SNMPv3 and described

in RFC1906 [10], RFC2572 [11] and RFC2574 [12].

Protocol operations for Accessing management information. The first

set of protocol operations and associated PDU formats is described in

STD 15, RFC1157 [8]. A second set of protocol operations and

associated PDU formats is described in RFC1905 [13].

A set of fundamental applications described in RFC2573 [14] and the

view-based access control mechanism described in RFC2575 [15].

A more detailed introduction to the current SNMP Management Framework

can be found in RFC2570 [16].

Managed objects are accessed via a virtual information store, termed

the Management Information Base or MIB. Objects in the MIB are

defined using the mechanisms defined in the SMI.

2.1. A Note on Terminology

The term "variable" refers to an instance of a non-aggregate object

type defined according to the conventions set forth in the SMIv2 (STD

58, RFC2578, [5]) or the textual conventions based on the SMIv2 (STD

58, RFC2579 [6]). The term "variable binding" normally refers to

the pairing of the name of a variable and its associated value.

However, if certain kinds of exceptional conditions occur during

processing of a retrieval request, a variable binding will pair a

name and an indication of that exception.

A variable-binding list is a simple list of variable bindings.

The name of a variable is an OBJECT IDENTIFIER, which is the

concatenation of the OBJECT IDENTIFIER of the corresponding object

type together with an OBJECT IDENTIFIER fragment identifying the

instance. The OBJECT IDENTIFIER of the corresponding object-type is

called the OBJECT IDENTIFIER prefix of the variable.

3. Extending the MIB

New MIB modules that extend the Internet-standard MIB are

continuously being defined by various IETF working groups. It is

also common for enterprises or individuals to create or extend

enterprise-specific or eXPerimental MIBs.

As a result, managed devices are frequently complex collections of

manageable components that have been independently installed on a

managed node. Each component provides instrumentation for the

managed objects defined in the MIB module(s) it implements.

The SNMP framework does not describe how the set of managed objects

supported by a particular agent may be changed dynamically.

3.1. Motivation for AgentX

This very real need to dynamically extend the management objects

within a node has given rise to a variety of "extensible agents",

which typically comprise

- a "master" agent that is available on the standard transport

address and that accepts SNMP protocol messages

- a set of "subagents" that each contain management

instrumentation

- a protocol that operates between the master agent and

subagents, permitting subagents to "connect" to the master

agent, and the master agent to multiplex received SNMP protocol

messages amongst the subagents.

- a set of tools to aid subagent development, and a runtime (API)

environment that hides much of the protocol operation between a

subagent and the master agent.

The wide deployment of extensible SNMP agents, coupled with the lack

of Internet standards in this area, makes it difficult to field

SNMP-manageable applications. A vendor may have to support several

different subagent environments (APIs) in order to support different

target platforms.

It can also become quite cumbersome to configure subagents and

(possibly multiple) master agents on a particular managed node.

Specifying a standard protocol for agent extensibility (AgentX)

provides the technical foundation required to solve both of these

problems. Independently developed AgentX-capable master agents and

subagents will be able to interoperate at the protocol level.

Vendors can continue to differentiate their products in all other

respects.

4. AgentX Framework

Within the SNMP framework, a managed node contains a processing

entity, called an agent, which has access to management information.

Within the AgentX framework, an agent is further defined to consist

of:

- a single processing entity called the master agent, which sends

and receives SNMP protocol messages in an agent role (as

specified by the SNMP framework documents) but typically has

little or no direct access to management information.

- zero or more processing entities called subagents, which are

"shielded" from the SNMP protocol messages processed by the

master agent, but which have access to management information.

The master and subagent entities communicate via AgentX protocol

messages, as specified in this memo. Other interfaces (if any) on

these entities, and their associated protocols, are outside the scope

of this document. While some of the AgentX protocol messages appear

similar in syntax and semantics to the SNMP, bear in mind that AgentX

is not SNMP.

The internal operations of AgentX are invisible to an SNMP entity

operating in a manager role. From a manager's point of view, an

extensible agent behaves exactly as would a non-extensible

(monolithic) agent that has access to the same management

instrumentation.

This transparency to managers is a fundamental requirement of AgentX,

and is what differentiates AgentX subagents from SNMP proxy agents.

4.1. AgentX Roles

An entity acting in a master agent role performs the following

functions:

- Accepts AgentX session establishment requests from subagents.

- Accepts registration of MIB regions by subagents.

- Sends and accepts SNMP protocol messages on the agent's

specified transport addresses.

- Implements the agent role Elements of Procedure specified for

the administrative framework applicable to the SNMP protocol

message, except where they specify performing management

operations. (The application of MIB views, and the access

control policy for the managed node, are implemented by the

master agent.)

- Provides instrumentation for the MIB objects defined in RFC

1907 [17], and for any MIB objects relevant to any

administrative framework it supports.

- Sends and receives AgentX protocol messages to access

management information, based on the current registry of MIB

regions.

- Forwards notifications on behalf of subagents.

An entity acting in a subagent role performs the following functions:

- Initiates AgentX sessions with the master agent.

- Registers MIB regions with the master agent.

- Instantiates managed objects.

- Binds OIDs within its registered MIB regions to actual

variables.

- Performs management operations on variables.

- Initiates notifications.

4.2. Applicability

It is intended that this memo specify the smallest amount of required

behavior necessary to achieve the largest benefit, that is, to cover

a very large number of possible MIB implementations and

configurations with minimum complexity and low "cost of entry".

This section discusses several typical usage scenarios.

1) Subagents implement separate MIB modules -- for example, subagent

`A' implements "mib-2", subagent `B' implements "host-resources".

It is anticipated that this will be the most common subagent

configuration.

2) Subagents implement rows in a "simple table". A simple table is

one in which row creation is not specified, and for which the MIB

does not define an object that counts entries in the table.

Examples of simple tables are rdbmsDbTable, udpTable, and

hrSWRunTable.

This is the most commonly defined type of MIB table, and probably

represents the next most typical configuration that AgentX would

support.

3) Subagents share MIBs along non-row partitions. Subagents register

"chunks" of the MIB that represent multiple rows, due to the

nature of the MIB's index structure. Examples include registering

ipNetToMediaEntry.n, where n represents the ifIndex value for an

interface implemented by the subagent, and tcpConnEntry.a.b.c.d,

where a.b.c.d represents an IP address on an interface implemented

by the subagent.

AgentX supports these three common configurations, and all

permutations of them, completely. The consensus is that they

comprise a very large majority of current and likely future uses of

multi-vendor extensible agent configurations.

4) Subagents implement rows in tables that permit row creation, for

example, the RMON historyControlTable. To implement row creation

in such tables, at least one AgentX subagent must register at a

point "higher" in the OID tree than an individual row (per

AgentX's dispatching procedure).

5) Subagents implement rows in tables whose MIB also defines an

object that counts entries in the table, for example the MIB-2

ifTable (due to ifNumber). The subagent that implements such a

counter object (like ifNumber) must go beyond AgentX to correctly

implement it. This is an implementation issue (and most new MIB

designs no longer include such objects).

Scenarios in these latter 2 categories were thought to occur somewhat

rarely in configurations where subagents are independently

implemented by different vendors. The focus of a standard protocol,

however, must be in just those areas where multi-vendor

interoperability must be assured.

Note that it would be inefficient (due to AgentX registration

overhead) to share a table among AgentX subagents if the table

contains very dynamic instances, and each subagent registers fully

qualified instances. ipRouteTable could be an example of such a

table in some environments.

4.3. Design Features of AgentX

The primary features of the design described in this memo are:

1) A general architectural division of labor between master agent and

subagent: The master agent is MIB ignorant and SNMP omniscient,

while the subagent is SNMP ignorant and MIB omniscient (for the

MIB variables it instantiates). That is, master agents,

exclusively, are concerned with SNMP protocol operations and the

translations to and from AgentX protocol operations needed to

carry them out; subagents are exclusively concerned with

management instrumentation; and neither should intrude on the

other's territory.

2) A standard protocol and "rules of engagement" to enable

interoperability between management instrumentation and extensible

agents.

3) Mechanisms for independently developed subagents to integrate into

the extensible agent on a particular managed node in such a way

that they need not be aware of any other existing subagents.

4) A simple, deterministic registry and dispatching algorithm. For a

given extensible agent configuration, there is a single subagent

who is "authoritative" for any particular region of the MIB (where

"region" may extend from an entire MIB down to a single object-

instance).

5) Performance considerations. It is likely that the master agent

and all subagents will reside on the same host, and in such cases

AgentX is more a form of inter-process communication than a

traditional communications protocol.

Some of the design decisions made with this in mind include:

- 32-bit alignment of data within PDUs

- Native byte-order encoding by subagents

- Large AgentX PDU payload sizes.

4.4. Non-Goals

1) Subagent-to-subagent communication. This is out of scope, due to

the security ramifications and complexity involved.

2) Subagent access (via the master agent) to MIB variables. This is

not addressed, since various other mechanisms are available and it

was not a fundamental requirement.

3) The ability to accommodate every conceivable extensible agent

configuration option. This was the most contentious ASPect in the

development of this protocol. In essence, certain features

currently available in some commercial extensible agent products

are not included in AgentX. Although useful or even vital in some

implementation strategies, the rough consensus was that these

features were not appropriate for an Internet Standard, or not

typically required for independently developed subagents to

coexist. The set of supported extensible agent configurations is

described above, in Section 4.2, "Applicability".

Some possible future version of the AgentX protocol may provide

coverage for one or more of these "non-goals" or for new goals that

might be identified after greater deployment experience.

5. AgentX Encodings

AgentX PDUs consist of a common header, followed by PDU-specific data

of variable length. Unlike SNMP PDUs, AgentX PDUs are not encoded

using the BER (as specified in ISO 8824 [18]), but are transmitted as

a contiguous byte stream. The data within this stream is organized

to provide natural alignment with respect to the start of the PDU,

permitting direct (integer) access by the processing entities.

The first four fields in the header are single-byte values. A bit

(NETWORK_BYTE_ORDER) in the third field (h.flags) is used to indicate

the byte ordering of all multi-byte integer values in the PDU,

including those which follow in the header itself. This is described

in more detail in Section 6.1, "AgentX PDU Header", below.

PDUs are depicted in this memo using the following convention (where

byte 1 is the first transmitted byte):

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

byte 1 byte 2 byte 3 byte 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

byte 5 byte 6 byte 7 byte 8

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fields marked "<reserved>" are reserved for future use and must be

zero-filled.

5.1. Object Identifier

An object identifier is encoded as a 4-byte header, followed by a

variable number of contiguous 4-byte fields representing sub-

identifiers. This representation (termed Object Identifier) is as

follows:

Object Identifier

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix include <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Object Identifier header fields:

n_subid

The number (0-128) of sub-identifiers in the object identifier.

An ordered list of "n_subid" 4-byte sub-identifiers follows the

4-byte header.

prefix

An unsigned value used to reduce the length of object

identifier encodings. A non-zero value "x" is interpreted as

the first sub-identifier after "internet" (1.3.6.1), and

indicates an implicit prefix "internet.x" to the actual sub-

identifiers encoded in the Object Identifier. For example, a

prefix field value 2 indicates an implicit prefix "1.3.6.1.2".

A value of 0 in the prefix field indicates there is no prefix

to the sub-identifiers.

include

Used only when the Object Identifier is the start of a

SearchRange, as described in section 5.2, "SearchRange".

sub-identifier 1, 2, ... n_subid

A 4-byte unsigned integer, encoded according to the header's

NETWORK_BYTE_ORDER bit.

A null Object Identifier consists of the 4-byte header with all bytes

set to 0.

Examples:

sysDescr.0 (1.3.6.1.2.1.1.1.0)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4 2 0 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1.2.3.4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4 0 0 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

2

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

5.2. SearchRange

A SearchRange consists of two Object Identifiers. In its

communication with a subagent, the master agent uses a SearchRange to

identify a requested variable binding, and, in GetNext and GetBulk

operations, to set an upper bound on the names of managed object

instances the subagent may send in reply.

The first Object Identifier in a SearchRange (called the starting

OID) indicates the beginning of the range. It is frequently (but not

necessarily) the name of a requested variable binding.

The "include" field in this OID's header is a boolean value (0 or 1)

indicating whether or not the starting OID is included in the range.

The second object identifier (ending OID) indicates the non-inclusive

end of the range, and its "include" field is always 0. A null value

for ending OID indicates an unbounded SearchRange.

Example: To indicate a search range from 1.3.6.1.2.1.25.2

(inclusive) to 1.3.6.1.2.1.25.2.1 (exclusive), the SearchRange would

be:

(start)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3 2 1 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

25

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

2

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(end)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4 2 0 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

25

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

2

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A SearchRangeList is a contiguous list of SearchRanges.

5.3. Octet String

An octet string is represented by a contiguous series of bytes,

beginning with a 4-byte integer (encoded according to the header's

NETWORK_BYTE_ORDER bit) whose value is the number of octets in the

octet string, followed by the octets themselves. This representation

is termed an Octet String. If the last octet does not end on a 4-

byte offset from the start of the Octet String, padding bytes are

appended to achieve alignment of following data. This padding must

be added even if the Octet String is the last item in the PDU.

Padding bytes must be zero filled.

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A null Octet String consists of a 4-byte length field set to 0.

5.4. Value Representation

Variable bindings may be encoded within the variable-length portion

of some PDUs. The representation of a variable binding (termed a

VarBind) consists of a 2-byte type field, a name (Object Identifier),

and the actual value data.

VarBind

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

v.type <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(v.name)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix 0 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(v.data)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

data

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

data

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

VarBind fields:

v.type

Indicates the variable binding's syntax, and must be one of the

following values:

Integer (2),

Octet String (4),

Null (5),

Object Identifier (6),

IpAddress (64),

Counter32 (65),

Gauge32 (66),

TimeTicks (67),

Opaque (68),

Counter64 (70),

noSuchObject (128),

noSuchInstance (129),

endOfMibView (130)

v.name

The Object Identifier which names the variable.

v.data

The actual value, encoded as follows:

- Integer, Counter32, Gauge32, and TimeTicks are encoded as 4

contiguous bytes, according to the header's

NETWORK_BYTE_ORDER bit.

- Counter64 is encoded as 8 contiguous bytes, according to

the header's NETWORK_BYTE_ORDER bit.

- Object Identifiers are encoded as described in section 5.1,

Object Identifier.

- IpAddress, Opaque, and Octet String are all octet strings

and are encoded as described in section 5.3, "Octet

String", Octet String. Note that the octets used to

represent IpAddress are always ordered most significant to

least significant.

Value data always follows v.name whenever v.type is one of

the above types. These data bytes are present even if they

will not be used (as, for example, in certain types of

index allocation).

- Null, noSuchObject, noSuchInstance, and endOfMibView do not

contain any encoded value. Value data never follows v.name

in these cases.

Note that the VarBind itself does not contain the value size.

That information is implied for the fixed-length types, and

explicitly contained in the encodings of variable-length types

Object Identifier and Octet String).

A VarBindList is a contiguous list of VarBinds. Within a

VarBindList, a particular VarBind is identified by an index value.

The first VarBind in a VarBindList has index value 1, the second has

index value 2, and so on.

6. Protocol Definitions

6.1. AgentX PDU Header

The AgentX PDU header is a fixed-format, 20-octet structure:

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version h.type h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An AgentX PDU header contains the following fields:

h.version

The version of the AgentX protocol (1 for this memo).

h.type

The PDU type; one of the following values:

agentx-Open-PDU (1),

agentx-Close-PDU (2),

agentx-Register-PDU (3),

agentx-Unregister-PDU (4),

agentx-Get-PDU (5),

agentx-GetNext-PDU (6),

agentx-GetBulk-PDU (7),

agentx-TestSet-PDU (8),

agentx-CommitSet-PDU (9),

agentx-UndoSet-PDU (10),

agentx-CleanupSet-PDU (11),

agentx-Notify-PDU (12),

agentx-Ping-PDU (13),

agentx-IndexAllocate-PDU (14),

agentx-IndexDeallocate-PDU (15),

agentx-AddAgentCaps-PDU (16),

agentx-RemoveAgentCaps-PDU (17),

agentx-Response-PDU (18)

The set of PDU types for "administrative processing" are 1-4

and 12-17. The set of PDU types for "SNMP request

processing" are 5-11.

h.flags

A bitmask, with bit 0 the least significant bit. The bit

definitions are as follows:

Bit Definition

--- ----------

0 INSTANCE_REGISTRATION

1 NEW_INDEX

2 ANY_INDEX

3 NON_DEFAULT_CONTEXT

4 NETWORK_BYTE_ORDER

5-7 (reserved)

The NETWORK_BYTE_ORDER bit applies to all multi-byte integer

values in the entire AgentX packet, including the remaining

header fields. If set, then network byte order (most

significant byte first; "big endian") is used. If not set,

then least significant byte first ("little endian") is used.

The NETWORK_BYTE_ORDER bit applies to all AgentX PDUs.

The NON_DEFAULT_CONTEXT bit is used only in the AgentX PDUs

described in section 6.1.1, "Context".

The NEW_INDEX and ANY_INDEX bits are used only within the

agentx-IndexAllocate-, and -IndexDeallocate-PDUs.

The INSTANCE_REGISTRATION bit is used only within the

agentx-Register-PDU.

h.sessionID

The session ID uniquely identifies a session over which

AgentX PDUs are exchanged between a subagent and the master

agent. The session ID has no significance and no defined

value in the agentx-Open-PDU sent by a subagent to open a

session with the master agent; in this case, the master

agent will assign a unique session ID that it will pass back

in the corresponding agentx-Response-PDU. From that point

on, that same session ID will appear in every AgentX PDU

exchanged over that session between the master and the

subagent. A subagent may establish multiple AgentX sessions

by sending multiple agentx-Open-PDUs to the master agent.

In master agents that support multiple transport protocols,

the sessionID should be globally unique rather than unique

just to a particular transport.

h.transactionID

The transaction ID uniquely identifies, for a given session,

the single SNMP management request (and single SNMP PDU)

with which an AgentX PDU is associated. If a single SNMP

management request results in multiple AgentX PDUs being

sent by the master agent with the same session ID, each of

these AgentX PDUs must contain the same transaction ID;

conversely, AgentX PDUs sent during a particular session,

that result from distinct SNMP management requests, must

have distinct transaction IDs within the limits of the 32-

bit field).

Note that the transaction ID is not the same as the SNMP

PDU's request-id (as described in section 4.1 of RFC1905

[13], nor is it the same as the SNMP Message's msgID (as

described in section 6.2 of RFC2572 [11]), nor can it be,

since a master agent might receive SNMP requests with the

same request-ids or msgIDs from different managers.

The transaction ID has no significance and no defined value

in AgentX administrative PDUs, i.e., AgentX PDUs that are

not associated with an SNMP management request.

h.packetID

A packet ID generated by the sender for all AgentX PDUs

except the agentx-Response-PDU. In an agentx-Response-PDU,

the packet ID must be the same as that in the received

AgentX PDU to which it is a response. A master agent might

use this field to associate subagent response PDUs with

their corresponding request PDUs. A subagent might use this

field to correlate responses to multiple (batched)

registrations.

h.payload_length

The size in octets of the PDU contents, excluding the 20-

byte header. As a result of the encoding schemes and PDU

layouts, this value will always be either 0, or a multiple

of 4.

6.1.1. Context

In the SNMPv1 or SNMPv2c, the community string may be used as an

index into a local repository of configuration information that may

include community profiles or more complex context information. In

SNMPv3 this notion of "context" is formalized (see section 3.3.1 in

RFC2571 [1].

AgentX provides a mechanism for transmitting a context specification

within relevant PDUs, but does not place any constraints on the

content of that specification.

An optional context field may be present in the agentx-Register-,

UnRegister-, AddAgentCaps-, RemoveAgentCaps-, Get-, GetNext-,

GetBulk-, IndexAllocate-, IndexDeallocate-, Notify-, TestSet-, and

Ping- PDUs.

If the NON_DEFAULT_CONTEXT bit in the AgentX header field h.flags is

clear, then there is no context field in the PDU, and the operation

refers to the default context. (This does not mean there is a zero-

length Octet String, it means there is no Octet String present.) If

the NON_DEFAULT_CONTEXT bit is set, then a context field immediately

follows the AgentX header, and the operation refers to that specific

context. The context is represented as an Octet String. There are

no constraints on its length or contents.

Thus, all of these AgentX PDUs (that is, those listed immediately

above) refer to, or "indicate" a context, which is either the default

context, or a non-default context explicitly named in the PDU.

6.2. AgentX PDUs

6.2.1. The agentx-Open-PDU

An agentx-Open-PDU is generated by a subagent to request

establishment of an AgentX session with the master agent.

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (1) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

o.timeout <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(o.id)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix 0 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

subidentifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

subidentifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(o.descr)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An agentx-Open-PDU contains the following fields:

o.timeout

The length of time, in seconds, that a master agent should

allow to elapse after dispatching a message on a session

before it regards the subagent as not responding. This is

the default value for the session, and may be overridden by

values associated with specific registered MIB regions. The

default value of 0 indicates that there is no session-wide

default value.

o.id

An Object Identifier that identifies the subagent.

Subagents that do not support such an notion may send a null

Object Identifier.

o.descr

An Octet String containing a DisplayString describing the

subagent.

6.2.2. The agentx-Close-PDU

An agentx-Close-PDU issued by either a subagent or the master agent

terminates an AgentX session.

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (2) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

c.reason <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An agentx-Close-PDU contains the following field:

c.reason

An enumerated value that gives the reason that the master

agent or subagent closed the AgentX session. This field may

take one of the following values:

reasonOther(1)

None of the following reasons

reasonParseError(2)

Too many AgentX parse errors from peer

reasonProtocolError(3)

Too many AgentX protocol errors from peer

reasonTimeouts(4)

Too many timeouts waiting for peer

reasonShutdown(5)

Sending entity is shutting down

reasonByManager(6)

Due to Set operation; this reason code can be used only

by the master agent, in response to an SNMP management

request.

6.2.3. The agentx-Register-PDU

An agentx-Register-PDU is generated by a subagent for each region of

the MIB variable naming tree (within one or more contexts) that it

wishes to support.

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (3) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(r.context) (OPTIONAL)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

r.timeout r.priority r.range_subid <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(r.subtree)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix 0 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(r.upper_bound)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

optional upper-bound sub-identifier

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An agentx-Register-PDU contains the following fields:

r.context

An optional non-default context.

r.timeout

The length of time, in seconds, that a master agent should

allow to elapse after dispatching a message on a session

before it regards the subagent as not responding. r.timeout

applies only to messages that concern MIB objects within

r.subtree. It overrides both the session's default value

(if any) indicated when the AgentX session with the master

agent was established, and the master agent's default

timeout. The default value for r.timeout is 0 (no

override).

r.priority

A value between 1 and 255, used to achieve a desired

configuration when different sessions register identical or

overlapping regions. Subagents with no particular knowledge

of priority should register with the default value of 127.

In the master agent's dispatching algorithm, smaller values

of r.priority take precedence over larger values, as

described in section 7.1.4.1, "Handling Duplicate and

Overlapping Subtrees".

r.subtree

An Object Identifier that names the basic subtree of a MIB

region for which a subagent indicates its support. The term

"subtree" is used generically here, it may represent a

fully-qualified instance name, a partial instance name, a

MIB table, an entire MIB, etc.

The choice of what to register is implementation-specific;

this memo does not specify permissible values. Standard

practice however is for a subagent to register at the

highest level of the naming tree that makes sense.

Registration of fully- qualified instances is typically done

only when a subagent can perform management operations only

on particular rows of a conceptual table.

If r.subtree is in fact a fully qualified instance name, the

INSTANCE_REGISTRATION bit in h.flags must be set, otherwise

it must be cleared. The master agent may save this

information to optimize subsequent operational dispatching.

r.range_subid

Permits specifying a range in place of one of r.subtree's

sub-identifiers. If this value is 0, no range is being

specified and there is no r.upper_bound field present in the

PDU. In this case the MIB region being registered is the

single subtree named by r.subtree.

Otherwise the "r.range_subid"-th sub-identifier in r.subtree

is a range lower bound, and the range upper bound sub-

identifier (r.upper_bound) immediately follows r.subtree.

In this case the MIB region being registered is the union of

the subtrees formed by enumerating this range.

Note that r.range_subid indicates the (1-based) index of

this sub-identifier within the OID represented by r.subtree,

regardless of whether or not r.subtree is encoded using a

prefix. (See the example below.)

r.upper_bound

The upper bound of a sub-identifier's range. This field is

present only if r.range_subid is not 0.

The use of r.range_subid and r.upper_bound provide a general

shorthand mechanism for specifying a MIB region. For

example, if r.subtree is the OID 1.3.6.1.2.1.2.2.1.1.7,

r.range_subid is 10, and r.upper_bound is 22, the specified

MIB region can be denoted 1.3.6.1.2.1.2.2.1.[1-22].7.

Registering this region is equivalent to registering the

union of subtrees

1.3.6.1.2.1.2.2.1.1.7

1.3.6.1.2.1.2.2.1.2.7

1.3.6.1.2.1.2.2.1.3.7

...

1.3.6.1.2.1.2.2.1.22.7

One expected use of this mechanism is registering a

conceptual row with a single PDU. In the example above, the

MIB region happens to be row 7 of the RFC1573 ifTable. The

actual PDU would be:

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (3) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

r.timeout r.priority 10 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(r.subtree)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6 2 0 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

2

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

2

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(r.upper_bound)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

22

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Note again that here r.range_subid is 10, even though n_subid in

r.subtree is only 6.

r.range_subid may be used at any level within a subtree, it need not

represent row-level registration. This mechanism may be used in any

way that is convenient for a subagent to achieve its registrations.

6.2.4. The agentx-Unregister-PDU

The agentx-Unregister-PDU is sent by a subagent to remove a MIB

region that was previously registered on this session.

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (4) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(u.context) OPTIONAL

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

<reserved> u.priority u.range_subid <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(u.subtree)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix 0 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(u.upper_bound)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

optional upper-bound sub-identifier

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An agentx-Unregister-PDU contains the following fields:

u.context

An optional non-default context.

u.priority

The priority at which this region was originally registered.

u.subtree

Indicates a previously-registered region of the MIB that a

subagent no longer wishes to support.

u.range_subid

Indicates a sub-identifier in u.subtree is a range lower

bound.

u.upper_bound

The upper bound of the range sub-identifier. This field is

present in the PDU only if u.range_subid is not 0.

6.2.5. The agentx-Get-PDU

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (5) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(g.context) OPTIONAL

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(g.sr)

(start 1)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix include <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(end 1)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 0 0 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

(start n)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix include <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(end n)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 0 0 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An agentx-Get-PDU contains the following fields:

g.context

An optional non-default context.

g.sr

A SearchRangeList containing the requested variables for

this session. Within the agentx-Get-PDU, the Ending OIDs

within SearchRanges are null-valued Object Identifiers.

6.2.6. The agentx-GetNext-PDU

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (6) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(g.context) OPTIONAL

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(g.sr)

(start 1)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix include <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(end 1)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix 0 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

(start n)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix include <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(end n)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix 0 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

An agentx-GetNext-PDU contains the following fields:

g.context

An optional non-default context.

g.sr

A SearchRangeList containing the requested variables for

this session.

6.2.7. The agentx-GetBulk-PDU

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (7) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(g.context) OPTIONAL

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

g.non_repeaters g.max_repetitions

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(g.sr)

...

An agentx-GetBulk-PDU contains the following fields:

g.context

An optional non-default context.

g.non_repeaters

The number of variables in the SearchRangeList that are not

repeaters.

g.max_repetitions

The maximum number of repetitions requested for repeating

variables.

g.sr

A SearchRangeList containing the requested variables for

this session.

6.2.8. The agentx-TestSet-PDU

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (8) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(t.context) OPTIONAL

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(t.vb)

(VarBind 1)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

v.type <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix 0 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

data

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

data

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

(VarBind n)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

v.type <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix 0 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

data

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

data

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An agentx-TestSet-PDU contains the following fields:

t.context

An optional non-default context.

t.vb

A VarBindList containing the requested VarBinds for this

subagent.

6.2.9. The agentx-CommitSet, -UndoSet, -CleanupSet PDUs

These PDUs consist of the AgentX header only.

The agentx-CommitSet-, -UndoSet-, and -Cleanup-PDUs are used in

processing an SNMP SetRequest operation.

6.2.10. The agentx-Notify-PDU

An agentx-Notify-PDU is sent by a subagent to cause the master agent

to forward a notification.

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (12) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(n.context) OPTIONAL

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(n.vb)

...

An agentx-Notify-PDU contains the following fields:

n.context

An optional non-default context.

n.vb

A VarBindList whose contents define the actual PDU to be

sent. This memo places the following restrictions on its

contents:

- If the subagent supplies sysUpTime.0, it must be

present as the first varbind.

- snmpTrapOID.0 must be present, as the second varbind

if sysUpTime.0 was supplied, as the first if it was

not.

6.2.11. The agentx-Ping-PDU

The agentx-Ping-PDU is sent by a subagent to the master agent to

monitor the master agent's ability to receive and send AgentX PDUs

over their AgentX session.

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (13) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(p.context) OPTIONAL

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An agentx-Ping-PDU may contain the following field:

p.context

An optional non-default context.

Using p.context a subagent can retrieve the sysUpTime value for a

specific context, if required.

6.2.12. The agentx-IndexAllocate-PDU

An agentx-IndexAllocate-PDU is sent by a subagent to request

allocation of a value for specific index objects. Refer to section

7.1.4.2, "Registering Stuff", for suggested usage.

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (14) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(i.context) OPTIONAL

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(i.vb)

...

An agentx-IndexAllocate-PDU contains the following fields:

i.context

An optional non-default context.

i.vb

A VarBindList containing the index names and values

requested for allocation.

6.2.13. The agentx-IndexDeallocate-PDU

An agentx-IndexDeallocate-PDU is sent by a subagent to release

previously allocated index values.

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (15) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(i.context) OPTIONAL

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Padding (as required)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(i.vb)

...

An agentx-IndexDeallocate-PDU contains the following fields:

i.context

An optional non-default context.

i.vb

A VarBindList containing the index names and values to be

released.

6.2.14. The agentx-AddAgentCaps-PDU

An agentx-AddAgentCaps-PDU is generated by a subagent to inform the

master agent of agent capabilities for the specified session.

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (16) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(a.context) (OPTIONAL)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Optional Padding

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(a.id)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix 0 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(a.descr)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Optional Padding

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An agentx-AddAgentCaps-PDU contains the following fields:

a.context

An optional non-default context.

a.id

An Object Identifier containing the value of an invocation

of the AGENT-CAPABILITIES macro, which the master agent

exports as a value of sysORID for the indicated context.

(Recall that the value of an invocation of an AGENT-

CAPABILITIES macro is an object identifier that describes a

precise level of support with respect to implemented MIB

modules. A more complete discussion of the AGENT-

CAPABILITIES macro and related sysORID values can be found

in section 6 of STD 58, RFC2580 [7].)

a.descr

An Octet String containing a DisplayString to be used as the

value of sysORDescr corresponding to the sysORID value

above.

6.2.15. The agentx-RemoveAgentCaps-PDU

An agentx-RemoveAgentCaps-PDU is generated by a subagent to request

that the master agent stop exporting a particular value of sysORID.

This value must have previously been advertised by the subagent in an

agentx-AddAgentCaps-PDU for this session.

(AgentX header)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (17) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(a.context) (OPTIONAL)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet String Length (L)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet 1 Octet 2 Octet 3 Octet 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Octet L - 1 Octet L Optional Padding

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

(a.id)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n_subid prefix 0 <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sub-identifier #n_subid

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An agentx-RemoveAgentCaps-PDU contains the following fields:

a.context

An optional non-default context.

a.id

An ObjectIdentifier containing the value of sysORID that

should no longer be exported.

6.2.16. The agentx-Response-PDU

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.version (1) h.type (18) h.flags <reserved>

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.sessionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.transactionID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.packetID

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

h.payload_length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

res.sysUpTime

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

res.error res.index

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...

An agentx-Response-PDU contains the following fields:

h.sessionID

If this is a response to an agentx-Open-PDU, then it

contains the new and unique sessionID (as assigned by the

master agent) for this session.

Otherwise it must be identical to the h.sessionID value in

the PDU to which this PDU is a response.

h.transactionID

Must be identical to the h.transactionID value in the PDU to

which this PDU is a response.

In an agentx response PDU from the master agent to the

subagent, the value of h.transactionID has no significance

and can be ignored by the subagent.

h.packetID

Must be identical to the h.packetID value in the PDU to

which this PDU is a response.

res.sysUpTime

This field contains the current value of sysUpTime for the

context indicated within the PDU to which this PDU is a

response. It is relevant only in agentx response PDUs sent

from the master agent to a subagent in response to the set

of administrative PDUs listed in section 6.1, "AgentX PDU

Header".

In an agentx response PDU from the subagent to the master

agent, the value of res.sysUpTime has no significance and is

ignored by the master agent.

res.error

Indicates error status. Within responses to the set of

"administrative" PDU types listed in section 6.1, "AgentX

PDU Header", values are limited to the following:

noAgentXError (0),

openFailed (256),

notOpen (257),

indexWrongType (258),

indexAlreadyAllocated (259),

indexNoneAvailable (260),

indexNotAllocated (261),

unsupportedContext (262),

duplicateRegistration (263),

unknownRegistration (264),

unknownAgentCaps (265),

parseError (266),

requestDenied (267),

processingError (268)

Within responses to the set of "SNMP request processing" PDU

types listed in section 6.1, "AgentX PDU Header", values may

also include those defined for errors in the SNMPv2 PDU (RFC

1905 [13]).

res.index

In error cases, this is the index of the failed variable

binding within a received request PDU. (Note: As explained

in section 5.4, "Value Representation", the index values of

variable bindings within a variable binding list are 1-

based.)

A VarBindList may follow res.index, depending on which AgentX PDU is

being responded to. These data are specified in the subsequent

elements of procedure.

7. Elements of Procedure

This section describes the actions of protocol entities (master

agents and subagents) implementing the AgentX protocol. Note,

however, that it is not intended to constrain the internal

architecture of any conformant implementation.

The actions of AgentX protocol entities can be broadly categorized

under two headings, each of which is described separately:

(1) processing AgentX administrative messages (e.g., registration

requests from a subagent to a master agent); and

(2) processing SNMP messages (the coordinated actions of a master

agent and one or more subagents in processing, for example, a

received SNMP GetRequest-PDU).

7.1. Processing AgentX Administrative Messages

This subsection describes the actions of AgentX protocol entities in

processing AgentX administrative messages. Such messages include

those involved in establishing and terminating an AgentX session

between a subagent and a master agent, those by which a subagent

requests allocation of instance index values, and those by which a

subagent communicates to a master agent which MIB regions it

supports.

Processing is defined specifically for each PDU type in its own

section. For the master agent, many of these PDU types require the

same initial processing steps. This common processing is defined

here, and referenced as needed in the PDU type-specific descriptions.

Common Processing:

The master agent initially processes a received AgentX PDU as

follows:

1) An agentx-Response-PDU is created, res.sysUpTime is set to the

value of sysUpTime.0 for the default context, res.error is set

to `noAgentXError', and res.index is set to 0.

2) If the received PDU cannot be parsed, res.error is set to `

parseError'. Examples of a parse error are:

- PDU length (h.payload) too short to contain current

construct (Object Identifier header indicates more sub-

identifiers, VarBind v.type indicates data follows, etc)

- An unrecognized value is encountered for h.type, v.type,

etc.

3) Otherwise, if h.sessionID does not correspond to a currently

established session with this subagent, res.error is set to

`notOpen'.

4) Otherwise, if the NON_DEFAULT_CONTEXT bit is set and the master

agent does not support the indicated context, res.error is set

to `unsupportedContext'. If the master agent does support the

indicated context, the value of res.sysUpTime is set to the

value of sysUpTime.0 for that context.

Note: Non-default contexts might be added on the fly by the master

agent, or the master agent might require such non-default

contexts to be pre-configured. The choice is

implementation-specific.

5) If resources cannot be allocated or some other condition

prevents processing, res.error is set to `processingError'.

6) At this point, if res.error is not `noAgentXError', the

received PDU is not processed further. If the received PDU's

header was successfully parsed, the AgentX-Response-PDU is sent

in reply. If the received PDU contained a VarBindList which

was successfully parsed, the AgentX-Response-PDU contains the

identical VarBindList. If the received PDU's header was not

successfully parsed or for some other reason the master agent

cannot send a reply, processing is complete.

7.1.1. Processing the agentx-Open-PDU

When the master agent receives an agentx-Open-PDU, it processes it as

follows:

1) An agentx-Response-PDU is created, res.sysUpTime is set to the

value of sysUpTime.0 for the default context, res.error is set to

`noAgentXError', and res.index is set to 0.

2) If the received PDU cannot be parsed, res.error is set to

`parseError'.

3) Otherwise, if the master agent is unable to open an AgentX session

for any reason, res.error is set to `openFailed'.

4) Otherwise: The master agent assigns a sessionID to the new

session and puts the value in the h.sessionID field of the

agentx-Response-PDU. This value must be unique among all existing

open sessions.

The master agent retains session-specific information from the PDU

for this session:

- The NETWORK_BYTE_ORDER value in h.flags is retained. All

subsequent AgentX protocol operations initiated by the master

agent for this session must use this byte ordering and set this

bit accordingly.

The subagent typically sets this bit to correspond to its native

byte ordering, and typically does not vary byte ordering for an

initiated session. The master agent must be able to decode each

PDU according to the h.flag NETWORK_BYTE_ORDER bit in the PDU, but

does not need to toggle its retained value for the session if the

subagent varies its byte ordering.

- The o.timeout value is used in calculating response timeout

conditions for this session. This field is also referenced in

the AgentX MIB (a work-in-progress) by the agentxSessionTimeout

object.

- The o.id and o.descr fields are used for informational

purposes. These two fields are also referenced in the AgentX

MIB (a work-in-progress) by the agentxSessionObjectID object,

and by the agentxSessionDescr object.

5) The agentx-Response-PDU is sent with the res.error field

indicating the result of the session initiation.

If processing was successful, an AgentX session is considered

established between the master agent and the subagent. An AgentX

session is a distinct channel for the exchange of AgentX protocol

messages between a master agent and one subagent, qualified by the

session-specific attributes listed in 4) above. AgentX session

establishment is initiated by the subagent. An AgentX session can be

terminated by either the master agent or the subagent.

7.1.2. Processing the agentx-IndexAllocate-PDU

When the master agent receives an agentx-IndexAllocate-PDU, it

performs the common processing described in section 7.1, "Processing

AgentX Administrative Messages". If as a result res.error is

`noAgentXError', processing continues as follows:

1) Each VarBind in the VarBindList is processed until either all are

successful, or one fails. If any VarBind fails, the agentx-

Response-PDU is sent in reply containing the original VarBindList,

with res.index set to indicate the failed VarBind, and with

res.error set as described subsequently. All other VarBinds are

ignored; no index values are allocated.

VarBinds are processed as follows:

- v.name is the OID prefix of the MIB OBJECT-TYPE for which a

value is to be allocated.

- v.type is the syntax of the MIB OBJECT-TYPE for which a value is

to be allocated.

- v.data indicates the specific index value requested. If the

NEW_INDEX or the ANY_INDEX bit is set, the actual value in

v.data is ignored and an appropriate index value is generated.

a) If there are no currently allocated index values for v.name in

the indicated context, and v.type does not correspond to a

valid index type value, the VarBind fails and res.error is set

to `indexWrongType'.

b) If there are currently allocated index values for v.name in the

indicated context, but the syntax of those values does not

match v.type, the VarBind fails and res.error is set to

`indexWrongType'.

c) Otherwise, if both the NEW_INDEX and ANY_INDEX bits are clear,

allocation of a specific index value is being requested. If

the requested index is already allocated for v.name in the

indicated context, the VarBind fails and res.error is set to

`indexAlreadyAllocated'.

d) Otherwise, if the NEW_INDEX bit is set, the master agent should

generate the next available index value for v.name in the

indicated context, with the constraint that this value must not

have been allocated (even if subsequently released) to any

subagent since the last re-initialization of the master agent.

If no such value can be generated, the VarBind fails and

res.error is set to `indexNoneAvailable'.

e) Otherwise, if the ANY_INDEX bit is set, the master agent should

generate an index value for v.name in the indicated context,

with the constraint that this value is not currently allocated

to any subagent. If no such value can be generated, then the

VarBind fails and res.error is set to `indexNoneAvailable'.

2) If all VarBinds are processed successfully, the agentx-Response-

PDU is sent in reply with res.error set to `noAgentXError'. A

VarBindList is included that is identical to the one sent in the

agentx-IndexAllocate-PDU, except that VarBinds requesting a

NEW_INDEX or ANY_INDEX value are generated with an appropriate

value.

See section 7.1.4.2, "Registering Stuff" for more information on

how subagents should perform index allocations.

7.1.3. Processing the agentx-IndexDeallocate-PDU

When the master agent receives an agentx-IndexDeallocate-PDU, it

performs the common processing described in section 7.1, "Processing

AgentX Administrative Messages". If as a result res.error is

`noAgentXError', processing continues as follows:

1) Each VarBind in the VarBindList is processed until either all are

successful, or one fails. If any VarBind fails, the agentx-

Response-PDU is sent in reply, containing the original

VarBindList, with res.index set to indicate the failed VarBind,

and with res.error set as described subsequently. All other

VarBinds are ignored; no index values are released.

VarBinds are processed as follows:

- v.name is the name of the index for which a value is to be

released

- v.type is the syntax of the index object

- v.data indicates the specific index value to be released. The

NEW_INDEX and ANY_INDEX bits are ignored.

a) If the index value for the named index is not currently

allocated to this session, the VarBind fails and res.error is

set to `indexNotAllocated'.

2) If all VarBinds are processed successfully, res.error is set to

`noAgentXError' and the agentx-Response-PDU is sent. A

VarBindList is included which is identical to the one sent in the

agentx-IndexDeallocate-PDU.

All released index values are now available, and may be used in

response to subsequent allocation requests for ANY_INDEX values and

in response to subsequent allocation requests for the particular

index value.

7.1.4. Processing the agentx-Register-PDU

When the master agent receives an agentx-Register-PDU, it performs

the common processing described in section 7.1, "Processing AgentX

Administrative Messages". If as a result res.error is

`noAgentXError', processing continues as follows:

If any of the union of subtrees defined by this MIB region is exactly

the same as any subtree defined by a MIB region currently registered

within the indicated context, those subtrees are termed "duplicate

subtrees".

If any of the union of subtrees defined by this MIB region overlaps,

or is itself overlapped by, any subtree defined by a MIB region

currently registered within the indicated context, those subtrees are

termed "overlapping subtrees".

1) If this registration would result in duplicate subtrees registered

with the same value of r.priority, the request fails and an

agentx-Response-PDU is returned with res.error set to

`duplicateRegistration'.

2) Otherwise, if the master agent does not wish to permit this

registration for implementation-specific reasons, the request

fails and an agentx-Response-PDU is returned with res.error set to

`requestDenied'.

3) Otherwise, the agentx-Response-PDU is returned with res.error set

to `noAgentXError'.

The master agent adds this MIB region to its registration data

store for the indicated context, to be considered during the

dispatching phase for subsequently received SNMP protocol

messages.

7.1.4.1. Handling Duplicate and Overlapping Subtrees

As a result of this registration algorithm there are likely to be

duplicate and/or overlapping subtrees within the registration data

store of the master agent. Whenever the master agent's dispatching

algorithm (see section 7.2.1, "Dispatching AgentX PDUs") determines

that there are multiple subtrees that could potentially contain the

same MIB object instances, the master agent selects one to use,

termed the 'authoritative region', as follows:

1) Choose the one whose original agentx-Register-PDU r.subtree

contained the most subids, i.e., the most specific r.subtree.

Note: The presence or absence of a range subid has no bearing

on how "specific" one object identifier is compared to another.

2) If still ambiguous, there were duplicate subtrees. Choose the

one whose original agentx-Register-PDU specified the smaller

value of r.priority.

7.1.4.2. Registering Stuff

This section describes more fully how AgentX subagents use the

agentx-IndexAllocate-PDU and agentx-Register-PDU to achieve desired

configurations.

7.1.4.2.1. Registration Priority

The r.priority field in the agentx-Register-PDU is intended to be

manipulated by human administrators to achieve a desired subagent

configuration. Typically this would be needed where a legacy

application registers a specific subtree, and a different

(configurable) application may need to become authoritative for the

identical subtree.

The result of this configuration (the same subtree registered on

different sessions with different priorities) is that the session

using the better priority (see section 7.1.4.1, "Handling Duplicate

and Overlapping Subtrees") will be authoritative. The other session

will simply never be dispatched to.

This is useful in the case described above, but is NOT useful in

other cases, particularly when subagents share tables indexed by

arbitrary values (see below). In general, subagents should register

using the default priority (127).

7.1.4.2.2. Index Allocation

Index allocation is a service provided by an AgentX master agent. It

provides generic support for sharing MIB conceptual tables among

subagents who are assumed to have no knowledge of each other.

The master agent maintains a database of index objects (OIDs), and,

for each index, the values that have been allocated for it. It is

unaware of what MIB variables (if any) the index objects represent.

By convention, subagents use the MIB variable listed in the INDEX

clause as the index object for which values must be allocated. For

tables indexed by multiple variables, values may be allocated for

each index (although this is frequently unnecessary; see example 2

below). The subagent may request allocation of

a) a specific index value

b) an index value that is not currently allocated

c) an index value that has never been allocated

The last two alternatives reflect the uniqueness and constancy

requirements present in many MIB specifications for arbitrary integer

indexes (e.g., ifIndex in the IF-MIB (RFC2233 [19]),

snmpFddiSMTIndex in the FDDI MIB (RFC1285 [20]), or

sysApplInstallPkgIndex in the System Application MIB (RFC2287

[21])). The need for subagents to share tables using such indexes is

the main motivation for index allocation in AgentX.

It is important to note that index allocation and MIB region

registration are not coupled in the master agent. The current state

of index allocations is not considered when processing registration

requests, and the current registry is not considered when processing

index allocation requests. (This is mainly to accommodate non-AgentX

subagents.)

AgentX subagents should follow the model of "first request allocation

of an index, then register the corresponding region". Then a

successful index allocation request gives a subagent a good hint (but

no guarantee) of what it should be able to register. The

registration may fail (with `duplicateRegistration') because some

other subagent session has already registered that row of the table.

The recommended mechanism for subagents to register conceptual rows

in a shared table is

1) Successfully allocate an index value.

2) Use that value to fully qualify the MIB region(s), and attempt to

register using the default priority.

3) If the registration fails with `duplicateRegistration' deallocate

the previously allocated index value(s) for this row and go to

step 1).

Note that index allocation is necessary only when the index in

question is an arbitrary value, and hence the subagent has no other

reasonable way to determine which index values to use. When index

values have intrinsic meaning it is not expected that subagents will

allocate their index values.

For example, RFC1514's table of running software processes

(hrSWRunTable) is indexed by the system's native process identifier

(pid). A subagent implementing the row of hrSWRunTable corresponding

to its own process would simply register the region defining that

row's object instances without allocating index values.

7.1.4.2.3. Examples

Example 1:

A subagent implements an interface, and wishes to register a

single row of the RFC2233 ifTable. It requests an allocation for

the index object "ifIndex", for a value that has never been

allocated (since ifIndex values must be unique). The master agent

returns the value "7".

The subagent now attempts to register row 7 of ifTable, by

specifying a MIB region in the agentx-Register-PDU of

1.3.6.1.2.1.2.2.1.[1-22].7. If the registration succeeds, no

further processing is required. The master agent will dispatch to

this subagent correctly.

If the registration failed with `duplicateRegistration', the

subagent should deallocate the failed index, request allocation of

a new index i, and attempt to register ifTable.[1-22].i, until

successful.

Example 2:

This same subagent wishes to register ipNetToMediaTable rows

corresponding to its interface (ifIndex i). Due to the structure

of this table, no further index allocation need be done. The

subagent can register the MIB region ipNetToMediaTable.[1-4].i, It

is claiming responsibility for all rows of the table whose value

of ipNetToMediaIfIndex is i.

Example 3:

A network device consists of a set of processors, each of which

accepts network connections for a unique set of IP addresses.

Further, each processor contains a subagent that implements

tcpConnTable. In order to represent tcpConnTable for the entire

managed device, the subagents need to share tcpConnTable.

In this case, no index allocation need be done at all. Each

subagent can register a MIB region of tcpConnTable.[1-5].a.b.c.d,

where a.b.c.d represents an unique IP address of the individual

processor.

Each subagent is claiming responsibility for the region of

tcpConnTable where the value of tcpConnLocalAddress is a.b.c.d.

Example 4:

The Application Management MIB (RFC2564 [22]) uses two objects to

index several tables. A partial description of them is:

applSrvIndex OBJECT-TYPE

SYNTAX Unsigned32 (1..'ffffffff'h)

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"An applSrvIndex is the system-unique identifier

of an instance of a service. The value is unique

not only across all instances of a given service,

but also across all services in a system."

applSrvName OBJECT-TYPE

SYNTAX SnmpAdminString

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The human-readable name of a service. Where

appropriate, as in the case where a service can

be identified in terms of a single protocol, the

strings should be established names such as those

assigned by IANA and found in STD 2 [23], or

defined by some other authority. In some cases

private conventions apply and the string should

in these cases be consistent with these

non-standard conventions. An applicability

statement may specify the service name(s) to be

used."

Since applSrvIndex is an arbitrary value, it would be reasonable

for subagents to allocate values for this index. applSrvName

however has intrinsic meaning and any values a subagent would use

should be known a priori, hence it is not reasonable for subagents

to allocate values of this index.

7.1.5. Processing the agentx-Unregister-PDU

When the master agent receives an agentx-Unregister-PDU, it performs

the common processing described in section 7.1, "Processing AgentX

Administrative Messages". If as a result res.error is `

noAgentXError', processing continues as follows:

1) If u.subtree, u.priority, u.range_subid (and if u.range_subid is

not 0, u.upper_bound), and the indicated context do not match an

existing registration made during this session, the agentx-

Response-PDU is returned with res.error set to `

unknownRegistration'.

2) Otherwise, the agentx-Response-PDU is sent in reply with res.error

set to `noAgentXError', and the previous registration is removed

from the registration data store.

7.1.6. Processing the agentx-AddAgentCaps-PDU

When the master agent receives an agentx-AddAgentCaps-PDU, it

performs the common processing described in section 7.1, "Processing

AgentX Administrative Messages". If as a result res.error is `

noAgentXError', processing continues as follows:

1) The master agent adds this agent capabilities information to the

sysORTable for the indicated context. An agentx-Response-PDU is

sent in reply with res.error set to `noAgentXError'.

7.1.7. Processing the agentx-RemoveAgentCaps-PDU

When the master agent receives an agentx-RemoveAgentCaps-PDU, it

performs the common processing described in section 7.1, "Processing

AgentX Administrative Messages". If as a result res.error is

`noAgentXError', processing continues as follows:

1) If the combination of a.id and the optional a.context does not

represent a sysORTable entry that was added by this subagent

during this session, the agentx-Response-PDU is returned with

res.error set to `unknownAgentCaps'.

2) Otherwise the master agent deletes the corresponding sysORTable

entry and sends in reply the agentx-Response-PDU, with res.error

set to `noAgentXError'.

7.1.8. Processing the agentx-Close-PDU

When the master agent receives an agentx-Close-PDU, it performs the

common processing described in section 7.1, "Processing AgentX

Administrative Messages", with the exception that step 4) is not

performed since the agentx-Close-PDU does may not contain a context

field. If as a result res.error is `noAgentXError', processing

continues as follows:

1) The master agent closes the AgentX session as described below, and

sends in reply the agentx-Response-PDU with res.error set to

`noAgentXError':

- All MIB regions that have been registered during this session

are unregistered, as described in section 7.1.5, "Processing

the agentx-Unregister-PDU".

- All index values allocated during this session are freed, as

described in section 7.1.3, "Processing the agentx-

IndexDeallocate-PDU".

- All sysORID values that were registered during this session are

removed, as described in section 7.1.7, "Processing the

agentx-RemoveAgentCaps-PDU".

The master agent does not maintain state for closed sessions. If a

subagent wishes to re-establish a session after it has been closed,

it needs to re-register MIB regions, agent capabilities, etc.

7.1.9. Detecting Connection Loss

If a master agent is able to detect (from the underlying transport)

that a subagent cannot receive AgentX PDUs, it should close all

affected AgentX sessions as described in section 7.1.8, "Processing

the agentx-Close-PDU", step 1).

7.1.10. Processing the agentx-Notify-PDU

A subagent sending SNMPv1 trap information must map this into

(minimally) a value of snmpTrapOID.0, as described in 3.1.2 of RFC

1908 [24].

When the master agent receives an agentx-Notify-PDU, it performs the

common processing described in section 7.1, "Processing AgentX

Administrative Messages". If as a result res.error is

`noAgentXError', processing continues as follows:

1) If the first VarBind is sysUpTime.0;

(a) if the second VarBind is not snmpTrapOID.0, res.error is set

to `processingError' and res.index to 2

(b) otherwise these two VarBinds are used as the first two

VarBinds within the generated notification.

2) If the first VarBind is not sysUpTime.0;

(a) if the first VarBind is not snmpTrapOID.0, res.error is set

to `processingError' and res.index to 1

(b) otherwise this VarBind is used for snmpTrapOID.0 within the

generated notification, and the master agent uses the current

value of sysUpTime.0 for the indicated context as sysUpTime.0

within the notification.

3) An agentx-Response-PDU is sent containing the original

VarBindList, and with res.error and res.index set as described

above. If res.error is `noAgentXError', notifications are sent

according to the implementation-specific configuration of the

master agent. If SNMPv1 Trap PDUs are generated, the recommended

mapping is as described in RFC2089 [25]. If res.error indicates

an error in processing, no notifications are generated.

Note that the master agent's successful response indicates the

agentx-Notify-PDU was received and validated. It does not

indicate that any particular notifications were actually generated

or received by notification targets.

7.1.11. Processing the agentx-Ping-PDU

When the master agent receives an agentx-Ping-PDU, it performs the

common processing described in section 7.1, "Processing AgentX

Administrative Messages". If as a result res.error is `

noAgentXError', processing continues as follows:

1) An agentx-Response-PDU is sent in reply.

If a subagent does not receive a response to its pings, or if it is

able to detect (from the underlying transport) that the master agent

is not able to receive AgentX messages, then it eventually must

initiate a new AgentX session, re-register its MIB regions, etc.

7.2. Processing Received SNMP Protocol Messages

When an SNMP GetRequest, GetNextRequest, GetBulkRequest, or

SetRequest protocol message is received by the master agent, the

master agent applies its access control policy.

In particular, for SNMPv1 or SNMPv2c protocol messages, the master

agent applies the Elements of Procedure defined in section 4.1 of STD

15, RFC1157 [8] that apply to receiving entities. For SNMPv3, the

master agent applies an Access Control Model, possibly the View-based

Access Control Model (see RFC2575 [15]), as described in section

3.1.2 and section 4.3 of RFC2571 [1].

For SNMPv1 and SNMPv2c, the master agent uses the community string as

an index into a local repository of configuration information that

may include community profiles or more complex context information.

For SNMPv3, the master agent uses the SNMP Context (see section 3.3.1

of RFC2571 [1]) for these purposes.

If application of the access control policy results in a valid SNMP

request PDU, then an SNMP Response-PDU is constructed from

information gathered in the exchange of AgentX PDUs between the

master agent and one or more subagents. Upon receipt and initial

validation of an SNMP request PDU, a master agent uses the procedures

described below to dispatch AgentX PDUs to the proper subagents,

marshal the subagent responses, and construct an SNMP response PDU.

7.2.1. Dispatching AgentX PDUs

Upon receipt and initial validation of an SNMP request PDU, a master

agent uses the procedures described below to dispatch AgentX PDUs to

the proper subagents.

General Rules of Procedure

While processing a particular SNMP request, the master agent may send

one or more AgentX PDUs on one or more subagent sessions. The

following rules of procedure apply in general to the AgentX master

agent. PDU-specific rules are listed in the applicable sections.

1) Honoring the registry

Because AgentX supports registration of duplicate and overlapping

regions, it is possible for the master agent to obtain a value for

a requested varbind from within multiple registered MIB regions.

The master agent must ensure that the value (or exception)

actually returned in the SNMP response PDU is taken from the

authoritative region (as defined in section 7.1.4.1, "Handling

Duplicate and Overlapping Subtrees").

2) GetNext and GetBulk Processing

The master agent may choose to send agentx-Get-PDUs while

servicing an SNMP GetNextRequest-PDU. The master agent may choose

to send agentx-Get-PDUs or agentx-GetNext-PDUs while servicing an

SNMP GetBulkRequest-PDU. One possible reason for this would be if

the current iteration has targeted instance-level registrations.

The master agent may choose to "scope" the possible instances

returned by a subagent by specifying an ending OID in the

SearchRange. If such scoping is used, typically the ending OID

would be the first lexicographical successor to the target region

that was registered on a session other than the target session.

Regardless of this choice, rule (1) must be obeyed.

The master agent may require multiple request-response iterations

on the same subagent session, to determine the final value of all

requested variables.

All AgentX PDUs sent on the session while processing a given SNMP

request must contain identical values of transactionID. Each

different SNMP request processed by the master agent must present

a unique value of transactionID (within the limits of the 32-bit

field) to the session.

3) Number and order of variables sent per AgentX PDU

For Get/GetNext/GetBulk operations, at any stage of the possibly

iterative process, the master agent may need to dispatch several

SearchRanges to a particular subagent session. The master agent

may send one, some, or all of the SearchRanges in a single AgentX

PDU.

The master agent must ensure that the correct contents and

ordering of the VarBindList in the SNMP Response-PDU are

maintained.

The following rules govern the number of VarBinds in a given

AgentX PDU:

a) The subagent must support processing of AgentX PDUs with

multiple VarBinds.

b) When processing an SNMP Set request, the master agent must

send all of the VarBinds applicable to a particular subagent

session in a single agentx-TestSet-PDU.

c) When processing an SNMP Get, GetNext, or GetBulk request,

the master agent may send a single AgentX PDU on the session

with all applicable VarBinds, or multiple PDUs with single

VarBinds, or something in between those extremes. The

determination of which method to use in a particular case is

implementation-specific.

4) Timeout Values

The master agent chooses a timeout value for each MIB region being

queried, which is

a) the value specified during registration of the MIB region,

if it was non-zero

b) otherwise, the value specified during establishment of the

session in which this region was subsequently registered, if

that value was non-zero

c) otherwise, or, if the specified value is not practical, the

master agent's implementaton-specific default value

When an AgentX PDU that references multiple MIB regions is

dispatched, the timeout value used for the PDU is the maximum

value of the timeouts so determined for each of the referenced MIB

regions.

5) Context

If the master agent has determined that a specific non-default

context is associated with the SNMP request PDU, that context is

encoded into the AgentX PDU's context field and the

NON_DEFAULT_CONTEXT bit is set in h.flags.

Otherwise, no context Octet String is added to the PDU, and the

NON_DEFAULT_CONTEXT bit is cleared.

7.2.1.1. agentx-Get-PDU

Each variable binding in the SNMP request PDU is processed as

follows:

(1) Identify the target MIB region.

Within a lexicographically ordered set of registered MIB

regions, valid for the indicated context, locate the

authoritative region (according to section 7.1.4.1, "Handling

Duplicate and Overlapping Subtrees") that contains the binding's

name.

(2) If no such region exists, the variable binding is not processed

further, and its value is set to `noSuchObject'.

(3) Identify the subagent session in which this region was

registered, termed the target session.

(4) If this is the first variable binding to be dispatched over the

target session in a request-response exchange entailed in the

processing of this management request:

- Create an agentx-Get-PDU for this session, with the header

fields initialized as described above (see section 6.1,

"AgentX PDU Header").

(5) Add a SearchRange to the end of the target session's PDU for

this variable binding.

- The variable binding's name is encoded into the starting OID.

- The ending OID is encoded as null.

7.2.1.2. agentx-GetNext-PDU

Each variable binding in the SNMP request PDU is processed as

follows:

(1) Identify the target MIB region.

Within a lexicographically ordered set of registered MIB

regions, valid for the indicated context, locate the

authoritative region (according to section 7.1.4.1, "Handling

Duplicate and Overlapping Subtrees") that

a) contains the variable binding's name and is not a fully

qualified instance, or

b) is the first lexicographical successor to the variable

binding's name.

(2) If no such region exists, the variable binding is not processed

further, and its value is set to `endOfMibView'.

(3) Identify the subagent session in which this region was

registered, termed the target session.

(4) If this is the first variable binding to be dispatched over the

target session in a request-response exchange entailed in the

processing of this management request:

- Create an agentx-GetNext-PDU for the session, with the header

fields initialized as described above (see section 6.1,

"AgentX PDU Header").

(5) Add a SearchRange to the end of the target session's agentx-

GetNext-PDU for this variable binding.

- if (1a) applies, the variable binding's name is encoded into

the starting OID, and the OID's "include" field is set to 0.

- if (1b) applies, the target region's r.subtree is encoded

into the starting OID, and its "include" field is set to 1.

(This is the recommended method. An implementation may

choose to use a Starting OID value that precedes r.subtree,

in which case the include bit must be 0. A starting OID

value that succeeds r.subtree is not permitted.)

- the Ending OID for the SearchRange is encoded to be either

NULL, or a value that lexicographically succeeds the Starting

OID. This is an implementation-specific choice depending on

how the master agent wishes to "scope" the possible returned

instances.

7.2.1.3. agentx-GetBulk-PDU

(Note: The outline of the following procedure is based closely on

section 4.2.3, "The GetBulkRequest-PDU" of RFC1905 [13]. Please

refer to it for details on the format of the SNMP GetBulkRequest-PDU

itself.)

Each variable binding in the request PDU is processed as follows:

(1) Identify the authoritative target region and target session,

exactly as described for the agentx-GetNext-PDU (see section

7.2.1.2, "agentx-GetNext-PDU").

(2) If this is the first variable binding to be dispatched over the

target session in a request-response exchange entailed in the

processing of this management request:

- Create an agentx-GetBulk-PDU for the session, with the header

fields initialized as described above (see section 6.1,

"AgentX PDU Header").

(3) Add a SearchRange to the end of the target session's agentx-

GetBulk-PDU for this variable binding, as described for the

agentx-GetNext-PDU. If the variable binding was a non-repeater

in the original request PDU, it must be a non-repeater in the

agentx-GetBulk-PDU.

The value of g.max_repetitions in the agentx-GetBulk-PDU may be less

than (but not greater than) the value in the original request PDU.

The master agent may make such alterations due to simple sanity

checking, optimizations for the current iteration based on the

registry, the maximum possible size of a potential Response-PDU,

known constraints of the AgentX transport, or any other

implementation-specific constraint.

7.2.1.4. agentx-TestSet-PDU

AgentX employs test-commit-undo-cleanup phases to achieve "as if

simultaneous" semantics of the SNMP SetRequest-PDU within the

extensible agent. The initial phase involves the agentx-TestSet-PDU.

Each variable binding in the SNMP request PDU is processed in order,

as follows:

(1) Identify the target MIB region and target session exactly as

described in section 7.2.1.1, "agentx-Get-PDU", step 1).

Within a lexicographically ordered set of OID ranges, valid for

the indicated context, locate the authoritative range that

contains the variable binding's name.

(2) If no such target region exists, this variable binding fails

with an error of `notWritable'. Processing is complete for this

request.

(3) If this is the first variable binding to be dispatched over the

target session in a request-response exchange entailed in the

processing of this management request:

- create an agentx-TestSet-PDU for the session, with the header

fields initialized as described above (see section 6.1,

"AgentX PDU Header").

(4) Add a VarBind to the end of the target session's PDU for this

variable binding, as described in section 5.4, "Value

Representation".

Note that all VarBinds applicable to a given session must be sent in

a single agentx-TestSet-PDU.

7.2.1.5. Dispatch

A timeout value is calculated for each PDU to be sent, which is the

maximum value of the timeouts determined for each of the PDU's

SearchRanges (as described above in section 7.2.1, "Dispatching

AgentX PDUs", item 4). Each pending PDU is mapped (via its

h.sessionID value) to a particular transport domain/endpoint, as

described in section 8 (Transport Mappings).

7.2.2. Subagent Processing

A subagent initially processes a received AgentX PDU as follows:

- If the received PDU is an agentx-Response-PDU:

1) If there are any errors parsing or interpreting the PDU, it is

silently dropped.

2) Otherwise the response is matched to the original request via

h.packetID, and handled in an implementation-specific manner. For

example, if this response indicates an error attempting to

register a MIB region, the subagent may wish to register a

different region, or log an error and halt, etc.

- If the received PDU is any other type:

1) an agentx-Response-PDU is created whose header fields are

identical to the received request PDU except that h.type is set to

Response, res.error to `noError', res.index to 0, and the

VarBindList to null.

2) If the received PDU cannot be parsed, res.error is set to

`parseError'.

3) Otherwise, if h.sessionID does not correspond to a currently

established session, res.error is set to `notOpen'.

4) At this point, if res.error is not `noError', the received PDU is

not processed further. If the received PDU's header was

successfully parsed, the AgentX-Response-PDU is sent in reply. If

the received PDU's header was not successfully parsed or for some

other reason the subagent cannot send a reply, processing is

complete.

7.2.3. Subagent Processing of agentx-Get, GetNext, GetBulk-PDUs

A conformant AgentX subagent must support the agentx-Get, -GetNext,

and -GetBulk PDUs, and must support multiple variables being supplied

in each PDU.

When a subagent receives an agentx-Get-, GetNext-, or GetBulk-PDU, it

performs the indicated management operations and returns an agentx-

Response-PDU.

Each SearchRange in the request PDU's SearchRangeList is processed as

described below, and a VarBind is added in the corresponding location

of the agentx-Response-PDU's VarbindList. If processing should fail

for any reason not described below, res.error is set to `genErr',

res.index to the index of the failed SearchRange, the VarBindList is

reset to null, and this agentx-Response-PDU is returned to the master

agent.

7.2.3.1. Subagent Processing of the agentx-Get-PDU

Upon the subagent's receipt of an agentx-Get-PDU, each SearchRange in

the request is processed as follows:

(1) The starting OID is copied to v.name.

(2) If the starting OID exactly matches the name of a variable

instantiated by this subagent within the indicated context and

session, v.type and v.data are encoded to represent the

variable's syntax and value, as described in section 5.4, "Value

Representation".

(3) Otherwise, if the starting OID does not match the object

identifier prefix of any variable instantiated within the

indicated context and session, the VarBind is set to

`noSuchObject', in the manner described in section 5.4, "Value

Representation".

(4) Otherwise, the VarBind is set to `noSuchInstance' in the manner

described in section 5.4, "Value Representation".

7.2.3.2. Subagent Processing of the agentx-GetNext-PDU

Upon the subagent's receipt of an agentx-GetNext-PDU, each

SearchRange in the request is processed as follows:

(1) The subagent searches for a variable within the

lexicographically ordered list of variable names for all

variables it instantiates (without regard to registration of

regions) within the indicated context and session, as follows:

- if the "include" field of the starting OID is 0, the

variable's name is the closest lexicographical successor to

the starting OID.

- if the "include" field of the starting OID is 1, the

variable's name is either equal to, or the closest

lexicographical successor to, the starting OID.

- If the ending OID is not null, the variable's name

lexicographically precedes the ending OID.

If a variable is successfully located, v.name is set to that

variable's name. v.type and v.data are encoded to represent the

variable's syntax and value, as described in section 5.4, "Value

Representation".

(2) If the subagent cannot locate an appropriate variable, v.name is

set to the starting OID, and the VarBind is set to `

endOfMibView', in the manner described in section 5.4, "Value

Representation".

7.2.3.3. Subagent Processing of the agentx-GetBulk-PDU

A maximum of N + (M * R) VarBinds are returned, where

N equals g.non_repeaters,

M equals g.max_repetitions, and

R is (number of SearchRanges in the GetBulk request) - N.

The first N SearchRanges are processed exactly as for the agentx-

GetNext-PDU.

If M and R are both non-zero, the remaining R SearchRanges are

processed iteratively to produce potentially many VarBinds. For each

iteration i, such that i is greater than zero and less than or equal

to M, and for each repeated SearchRange s, such that s is greater

than zero and less than or equal to R, the (N+((i-1)*R)+s)-th VarBind

is added to the agentx-Response-PDU as follows:

1) The subagent searches for a variable within the

lexicographically ordered list of variable names for all

variables it instantiates (without regard to registration of

regions) within the indicated context and session, for which

the following are all true:

- The variable's name is the (i)-th lexicographical successor

to the (N+s)-th requested OID.

(Note that if i is 0 and the "include" field is 1, the

variable's name may be equivalent to, or the first

lexicographical successor to, the (N+s)-th requested OID.)

- If the ending OID is not null, the variable's name

lexicographically precedes the ending OID.

If all of these conditions are met, v.name is set to the located

variable's name. v.type and v.data are encoded to represent the

variable's syntax and value, as described in section 5.4, "Value

Representation".

2) If no such variable exists, the VarBind is set to `

endOfMibView' as described in section 5.4, "Value

Representation". v.name is set to v.name of the (N+((i-

2)*R)+s)-th VarBind unless i is currently 1, in which case it

is set to the value of the starting OID in the (N+s)-th

SearchRange.

Note that further iterative processing should stop if

- For any iteration i, all s values of v.type are `

endOfMibView'.

- An AgentX transport constraint or other implementation-

specific constraint is reached.

7.2.4. Subagent Processing of agentx-TestSet, -CommitSet, -UndoSet,

-CleanupSet-PDUs

A conformant AgentX subagent must support the agentx-TestSet,

-CommitSet, -UndoSet, and -CleanupSet PDUs, and must support multiple

variables being supplied in the agentx-TestSet-PDU.

These four PDUs are used to collectively perform the indicated

management operation. An agentx-Response-PDU is sent in reply to

each of the PDUs (except -CleanupSet), to inform the master agent of

the state of the operation.

The master agent must serialize Set transactions for each session.

That is, a session need not handle multiple concurrent Set

transactions.

These Response-PDUs do not contain a VarBindList.

7.2.4.1. Subagent Processing of the agentx-TestSet-PDU

Upon the subagent's receipt of an agentx-TestSet-PDU, each VarBind in

the PDU is validated until they are all successful, or until one

fails, as described in section 4.2.5 of RFC1905 [13]. The subagent

validates variables with respect to the context and session indicated

in the testSet-PDU.

If each VarBind is successful, the subagent has a further

responsibility to ensure the availability of all resources (memory,

write access, etc.) required for successfully carrying out a

subsequent agentx-CommitSet operation. If this cannot be guaranteed,

the subagent should set res.error to `resourceUnavailable'. As a

result of this validation step, an agentx-Response-PDU is sent in

reply whose res.error field is set to one of the following SNMPv2 PDU

error-status values (see section 3, "Definitions", in RFC1905 [13]):

noError (0),

genErr (5),

noAccess (6),

wrongType (7),

wrongLength (8),

wrongEncoding (9),

wrongValue (10),

noCreation (11),

inconsistentValue (12),

resourceUnavailable (13),

notWritable (17),

inconsistentName (18)

If this value is not `noError', the res.index field must be set to

the index of the VarBind for which validation failed.

Implementation of rigorous validation code may be one of the most

demanding aspects of subagent development. Implementors are strongly

encouraged to do this right, so as to avoid if at all possible the

extensible agent's having to return `commitFailed' or `undoFailed'

during subsequent processing.

7.2.4.2. Subagent Processing of the agentx-CommitSet-PDU

The agentx-CommitSet-PDU indicates that the subagent should actually

perform (as described in the post-validation sections of 4.2.5 of RFC

1905 [13]) the management operation indicated by the previous

TestSet-PDU. After carrying out the management operation, the

subagent sends in reply an agentx-Response-PDU whose res.error field

is set to one of the following SNMPv2 PDU error-status values (see

section 3, "Definitions", in RFC1905 [13]):

noError (0),

commitFailed (14)

If this value is `commitFailed', the res.index field must be set to

the index of the VarBind (as it occurred in the agentx-TestSet-PDU)

for which the operation failed. Otherwise res.index is set to 0.

7.2.4.3. Subagent Processing of the agentx-UndoSet-PDU

The agentx-UndoSet-PDU indicates that the subagent should undo the

management operation requested in a preceding CommitSet-PDU. The

undo process is as described in section 4.2.5 of RFC1905 [13].

After carrying out the undo process, the subagent sends in reply an

agentx-Response-PDU whose res.error field is set to one of the

following SNMPv2 PDU error-status values (see section 3,

"Definitions", in RFC1905 [13]):

noError (0),

undoFailed (15)

If this value is `undoFailed', the res.index field must be set to the

index of the VarBind (as it occurred in the agentx-TestSet-PDU) for

which the operation failed. Otherwise res.index is set to 0.

This PDU also signals the end of processing of the management

operation initiated by the previous TestSet-PDU. The subagent should

release resources, etc. as described in section 7.2.4.4, "Subagent

Processing of the agentx-CleanupSet-PDU".

7.2.4.4. Subagent Processing of the agentx-CleanupSet-PDU

The agentx-CleanupSet-PDU signals the end of processing of the

management operation requested in the previous TestSet-PDU. This is

an indication to the subagent that it may now release any resources

it may have reserved in order to carry out the management request.

No response is sent by the subagent.

7.2.5. Master Agent Processing of AgentX Responses

The master agent now marshals all subagent AgentX response PDUs and

builds an SNMP response PDU. In the next several subsections, the

initial processing of all subagent AgentX response PDUs is described,

followed by descriptions of subsequent processing for each specific

subagent Response.

7.2.5.1. Common Processing of All AgentX Response PDUs

1) If a response is not received on a session within the timeout

interval for this dispatch, it is treated as if the subagent had

returned `genErr' and processed as described below.

A timeout may be due to a variety of reasons, and does not

necessarily denote a failed or malfunctioning subagent. As such,

the master agent's response to a subagent timeout is

implementation-specific, but with the following constraint:

A session that times out on three consecutive AgentX requests is

considered unable to respond, and the master agent must close the

AgentX session as described in section 7.1.8, "Processing the

agentx-Close-PDU", step (2).

2) Otherwise, the h.packetID, h.sessionID, and h.transactionID fields

of the AgentX response PDU are used to correlate subagent

responses. If the response does not pertain to this SNMP

operation, it is ignored.

3) Otherwise, the responses are processed jointly to form the SNMP

response PDU.

7.2.5.2. Processing of Responses to agentx-Get-PDUs

After common processing of the subagent's response to an agentx-Get-

PDU (see section 7.2.5.1, "Common Processing of All AgentX Response

PDUs", above), processing continues with the following steps:

1) For any received AgentX response PDU, if res.error is not

`noError', the SNMP response PDU's error code is set to this

value. If res.error contains an AgentX specific value (e.g.

`parseError'), the SNMP response PDU's error code is set to a

value of genErr instead. Also, the SNMP response PDU's error

index is set to the index of the variable binding corresponding to

the failed VarBind in the subagent's AgentX response PDU.

All other AgentX response PDUs received due to processing this

SNMP request are ignored. Processing is complete; the SNMP

Response PDU is ready to be sent (see section 7.2.6, "Sending the

SNMP Response-PDU").

2) Otherwise, the content of each VarBind in the AgentX response PDU

is used to update the corresponding variable binding in the SNMP

Response-PDU.

7.2.5.3. Processing of Responses to agentx-GetNext-PDU and

agentx-GetBulk-PDU

After common processing of the subagent's response to an agentx-

GetNext-PDU or agentx-GetBulk-PDU (see section 7.2.5.1, "Common

Processing of All AgentX Response PDUs", above), processing continues

with the following steps:

1) For any received AgentX response PDU, if res.error is not

`noError', the SNMP response PDU's error code is set to this

value. If res.error contains an AgentX specific value (e.g.

`parseError'), the SNMP response PDU's error code is set to a

value of genErr instead. Also, the SNMP response PDU's error

index is set to the index of the variable binding corresponding to

the failed VarBind in the subagent's AgentX response PDU.

All other AgentX response PDUs received due to processing this

SNMP request are ignored. Processing is complete; the SNMP

response PDU is ready to be sent (see section 7.2.6, "Sending the

SNMP Response-PDU").

2) Otherwise, the content of each VarBind in the AgentX response PDU

is used to update the corresponding VarBind in the SNMP response

PDU.

After all expected AgentX response PDUs have been processed, if any

VarBinds still contain the value `endOfMibView' in their v.type

fields, processing must continue:

3) A new iteration of AgentX request dispatching is initiated (as

described in section 7.2.1.2, "agentx-GetNext-PDU"), in which only

those VarBinds whose v.type is `endOfMibView' are processed.

4) For each such VarBind, an authoritative target MIB region is

identified in which the master agent expects to find suitable MIB

variables. The target session is the one on which this new target

region was registered.

The starting OID in each SearchRange is set to the value of v.name

for the corresponding VarBind, and its "include" field is set to

0.

5) The value of transactionID must be identical to the value used

during the previous iteration.

6) The AgentX PDUs are sent on the target session(s), and the

responses are received and processed according to the steps

described in section 7.2.5, "Master Agent Processing of AgentX

Responses".

7) This process continues iteratively until a complete SNMP

Response-PDU has been built, or until there remain no

authoritative MIB regions to query.

Note that r.subtree for the new target region identified in step 4)

may not lexicographically succeed r.subtree for the region that has

returned `endOfMibView'. For example, consider the following

registry:

session A `mib-2' (1.3.6.1.2.1)

session B `ip' (1.3.6.1.2.1.4)

session C `tcp' (1.3.6.1.2.1.6)

If while processing a GetNext-Request-PDU session B returns

`endOfMibView' for a variable name within 1.3.6.1.2.1.4, the target

MIB region identified in step 4) would be 1.3.6.1.2.1 (since it may

contain variables whose names precede 1.3.6.1.2.1.6).

Note also that if session A returned variables from within

1.3.6.1.2.1.6, they must be discarded since session A is NOT

authoritative for that region.

7.2.5.4. Processing of Responses to agentx-TestSet-PDUs

After common processing of the subagent's response to an agentx-

TestSet-PDU (see section 7.2.5.1, "Common Processing of All AgentX

Response PDUs", above), processing continues with the further

exchange of AgentX PDUs. The value of h.transactionID in the

agentx-CommitSet, -UndoSet, and -CleanupSet-PDUs must be identical to

the value sent in the testSet-PDU.

The state transitions and PDU sequences are depicted in section 7.3,

"State Transitions".

The set of all sessions who have been sent an agentx-TestSet-PDU for

this particular transaction are referred to below as "involved

sessions".

1) If any target session's response is not `noError', all other

agentx-Response-PDUs received due to processing this SNMP request

are ignored.

An agentx-CleanupSet-PDU is sent to all involved sessions.

Processing is complete; the SNMP response PDU is constructed as

described below in 7.2.6, "Sending the SNMP Response-PDU".

2) Otherwise an agentx-CommitSet-PDU is sent to all involved

sessions.

7.2.5.5. Processing of Responses to agentx-CommitSet-PDUs

After common processing of the subagent's response to an agentx-

CommitSet-PDU (see section 7.2.5.1, "Common Processing of All AgentX

Response PDUs", above), processing continues with the following

steps:

1) If any response is not `noError', the SNMP response PDU's error

code is set to this value. If res.error contains an AgentX

specific value (e.g. `parseError'), the SNMP response PDU's error

code is set to a value of genErr instead. Also, the SNMP response

PDU's error index is set to the index of the VarBind corresponding

to the failed VarBind in the agentx-TestSet-PDU.

An agentx-UndoSet-PDU is sent to each target session that has been

sent an agentx-CommitSet-PDU. An agentx-CleanupSet-PDU is sent to

the remainder of the involved sessions.

2) Otherwise an agentx-CleanupSet-PDU is sent to all involved

sessions. Processing is complete; the SNMP response PDU is

constructed as described below in section 7.2.6, "Sending the SNMP

Response-PDU".

7.2.5.6. Processing of Responses to agentx-UndoSet-PDUs

After common processing of the subagent's response to an agentx-

UndoSet-PDU (see section 7.2.5.1, "Common Processing of All AgentX

Response PDUs", above), processing continues with the following

steps:

1) If any response is `undoFailed' the SNMP response PDU's error code

is set to this value. Also, the SNMP response PDU's error index

is set to 0.

2) Otherwise, if any response is not `noError' the SNMP response

PDU's error code is set to this value. Also, the SNMP response

PDU's error index is set to the index of the VarBind corresponding

to the failed VarBind in the agentx-TestSet-PDU. If res.error is

an AgentX specific value (e.g. `parseError'), the SNMP response

PDU's error code is set to a value of genErr instead.

3) Otherwise the SNMP response PDU's error code and error index were

set in section 7.2.5.5 step 1)

7.2.6. Sending the SNMP Response-PDU

Once the processing described in section 7.2.5, "Master Agent

Processing of AgentX Responses" is complete, there is an SNMP

response PDU available. The master agent now implements the Elements

of Procedure for the applicable version of the SNMP protocol in order

to encapsulate the PDU into a message, and transmit it to the

originator of the SNMP management request. Note that this may

involve altering the PDU contents (for instance, to replace the

original VarBinds if an error condition is to be returned).

The response PDU may also be altered in order to support the SNMPv1

PDU. In such cases the required PDU mapping is that defined in RFC

2089 [25]. (Note in particular that the rules for handling Counter64

syntax may require re-sending AgentX GetBulk or GetNext PDUs until a

VarBind of suitable syntax is returned.)

7.2.7. MIB Views

AgentX subagents are not aware of MIB views, since view information

is not contained in AgentX PDUs.

As stated above, the descriptions of procedures in section 7,

"Elements of Procedure", of this memo are not intended to constrain

the internal architecture of any conformant implementation. In

particular, the master agent procedures described in section 7.2.1,

"Dispatching AgentX PDUs" and in section 7.2.5, "Master Agent

Processing of AgentX Responses" may be altered so as to optimize

AgentX exchanges when implementing MIB views.

Such optimizations are beyond the scope of this memo. But note that

section 7.2.3, "Subagent Processing of agentx-Get, GetNext, GetBulk-

PDUs", defines subagent behavior in such a way that alteration of

SearchRanges may be used in such optimizations.

7.3. State Transitions

State diagrams are presented from the master agent's perspective for

transport connection and session establishment, and from the

subagent's perspective for Set transaction processing.

7.3.1. Set Transaction States

The following table presents, from the subagent's perspective, the

state transitions involved in Set transaction processing:

STATE

+---------------+--------------+---------+--------+--------

A B C D E

(Initial TestOK Commit Test Commit

State) OK Fail Fail

EVENT

---------+---------------+--------------+---------+--------+--------

7.2.4.1

Receive All varbinds

TestSet OK? X X X X

PDU Yes ->B

No ->D

---------+---------------+--------------+---------+--------+--------

7.2.4.2

Receive NoError?

Commit- X Yes ->C X X X

Set PDU No ->E

---------+---------------+--------------+---------+--------+--------

Receive 7.2.4.3 7.2.4.3

UndoSet X X ->done X ->done

PDU

---------+---------------+--------------+---------+--------+--------

Receive 7.2.4.4 7.2.4.4 7.2.4.4

Cleanup- X ->done ->done ->done X

Set PDU

---------+---------------+--------------+---------+--------+--------

Session rollback undo

Loss ->done ->done ->done ->done ->done

---------+---------------+--------------+---------+--------+--------

There are three possible sequences that a subagent may follow for a

particular set transaction:

1) TestSet CommitSet CleanupSet

2) TestSet CommitSet UndoSet

3) TestSet CleanupSet

Note that a single PDU sequence may result in multiple paths through

the finite state machine (FSM). For example, the sequence

TestSet CommitSet UndoSet

may walk through either of these two state sequences:

(initial) TestOK CommitOK (done)

(initial) TestOK CommitFail (done)

7.3.2. Transport Connection States

The following table presents, from the master agent's perspective,

the state transitions involved in transport connection setup and

teardown:

STATE

+--------------+--------------

A B

No transport Transport

connected

EVENT

----------------+--------------+--------------

Transport

connect ->B X

indication

----------------+--------------+--------------

Receive if no resources

Open-PDU available

reject, else

X establish

session

->B

----------------+--------------+--------------

Receive if matching

Response-PDU session id,

feed to that

X session's FSM

else ignore

->B

----------------+--------------+--------------

Receive other if matching

PDUs session id,

feed to that

X session's FSM

else reject

->B

----------------+--------------+--------------

Transport notify all

disconnect sessions on

indication X this transport

->A

----------------+--------------+--------------

7.3.3. Session States

The following table presents, from the master agent's perspective,

the state transitions involved in session setup and teardown:

STATE

+-------------+----------------

A B

No session Session

established

EVENT

---------------+-------------+----------------

7.1.1

Receive X

Open PDU ->B

---------------+-------------+----------------

7.1.8

Receive X

Close PDU ->A

---------------+-------------+----------------

Receive 7.1.4

Register PDU X

->B

---------------+-------------+----------------

Receive 7.1.5

Unregister X

PDU ->B

---------------+-------------+----------------

Receive

Get PDU

GetNext PDU

GetBulk PDU X X

TestSet PDU

CommitSet PDU

UndoSet PDU

CleanupSet PDU

---------------+-------------+----------------

Receive 7.1.10

Notify PDU X

->B

---------------+-------------+----------------

Receive Ping 7.1.11

PDU X

->B

---------------+-------------+----------------

(continued next page)

---------------+-------------+----------------

Receive 7.1.2

IndexAllocate X

PDU ->B

---------------+-------------+----------------

Receive 7.1.3

IndexDeallocate X

PDU ->B

---------------+-------------+----------------

Receive 7.1.6

AddAgentxCaps X

PDU ->B

---------------+-------------+----------------

Receive 7.1.7

RemoveAgentxCap X

PDU ->B

---------------+-------------+----------------

Receive 7.2.5

Response PDU X

->B

---------------+-------------+----------------

Receive

Other PDU X X

---------------+-------------+----------------

8. Transport Mappings

The same AgentX PDU formats, encodings, and elements of procedure are

used regardless of the underlying transport.

8.1. AgentX over TCP

8.1.1. Well-known Values

The master agent accepts TCP connection requests for the well-known

port 705. Subagents connect to the master agent using this port

number.

8.1.2. Operation

Once a TCP connection has been established, the AgentX peers use this

connection to carry all AgentX PDUs. Multiple AgentX sessions may be

established using the same TCP connection. AgentX PDUs are sent

within an AgentX session. AgentX peers are responsible for mapping

the h.sessionID to a particular TCP connection.

The AgentX entity must not "interleave" AgentX PDUs within the TCP

byte stream. All the bytes of one PDU must be sent before any bytes

of a different PDU. The receiving entity must be prepared for TCP to

deliver byte sequences that do not coincide with AgentX PDU

boundaries.

8.2. AgentX over UNIX-domain Sockets

Many (BSD-derived) implementations of the UNIX operating system

support the UNIX pathname address family (AF_UNIX) for socket

communications. This provides a convenient method of sending and

receiving data between processes on the same host.

Mapping AgentX to this transport is useful for environments that

- wish to guarantee subagents are running on the same managed

node as the master agent, and where

- sockets provide better performance than TCP or UDP, especially

in the presence of heavy network I/O

8.2.1. Well-known Values

The master agent creates a well-known UNIX-domain socket endpoint

called "/var/agentx/master". (It may create other, implementation-

specific endpoints.)

This endpoint name uses the character set encoding native to the

managed node, and represents a UNIX-domain stream (SOCK_STREAM)

socket.

8.2.2. Operation

Once a connection has been established, the AgentX peers use this

connection to carry all AgentX PDUs.

Multiple AgentX sessions may be established using the same

connection. AgentX PDUs are sent within an AgentX session. AgentX

peers are responsible for mapping the h.sessionID to a particular

connection.

The AgentX entity must not "interleave" AgentX PDUs within the socket

byte stream. All the bytes of one PDU must be sent before any bytes

of a different PDU. The receiving entity must be prepared for the

socket to deliver byte sequences that do not coincide with AgentX PDU

boundaries.

9. Security Considerations

This memo defines a protocol between two processing entities, one of

which (the master agent) is assumed to perform authentication of

received SNMP requests and to control access to management

information. The master agent performs these security operations

independently of the other processing entity (the subagent).

Security considerations require three questions to be answered:

1. Is a particular subagent allowed to initiate a session with a

particular master agent?

2. During an AgentX session, is any SNMP security-related

information (for example, community names) passed from the

master agent to the subagent?

3. During an AgentX session, what part of the MIB tree is this

subagent allowed to register?

The answer to the third question is: A subagent can register any

subtree (subject to AgentX elements of procedure, section 7.1.4,

"Processing the agentx-Register-PDU"). Currently there is no access

control mechanism defined in AgentX. A concern here is that a

malicious subagent that registers an unauthorized "sensitive"

subtree, could see modification requests to those objects, or by

giving its own clever answer to NMS queries, could cause the NMS to

do something that leads to information disclosure or other damage.

The answer to the second question is: No.

Now we can answer the first question. AgentX does not contain a

mechanism for authorizing/refusing session initiations. Thus,

controlling subagent access to the master agent may only be done at a

lower layer (e.g., transport).

An AgentX subagent can connect to a master agent using either a

network transport mechanism (e.g., TCP), or a "local" mechanism

(e.g., shared memory, named pipes).

In the case where a local transport mechanism is used and both

subagent and master agent are running on the same host, connection

authorization can be delegated to the operating system features. The

answer to the first security question then becomes: "If and only if

the subagent has sufficient privileges, then the operating system

will allow the connection".

If a network transport is used, currently there is no inherent

security. Transport Layer Security, SSL, or IPsec SHOULD be used to

control and protect subagent connections in this mode of operation.

However, we RECOMMEND that subagents always run on the same host as

the master agent and that operating system features be used to ensure

that only properly authorized subagents can establish connections to

the master agent.

10. Acknowledgements

The initial development of this memo was heavily influenced by the

DPI 2.0 specification RFC1592 [26].

This document was produced by the IETF Agent Extensibility (AgentX)

Working Group, and benefited especially from the contributions of the

following working group members:

David Battle, Uri Blumenthal, Jeff Case, Maria Greene, Lauren

Heintz, Dave Keeney, Harmen van der Linde, Bob Natale, Aleksey

Romanov, Don Ryan, and Juergen Schoenwaelder.

An honorable mention is extended to Randy Presuhn in recognition for

his numerous technical contributions to this specification; for his

many answers provided on (and hosting of) the AgentX e-mail list and

FTP site, and, for the valued support and guidance Randy provided to

the Working Group chair.

The AgentX Working Group is chaired by:

Bob Natale

ACE*COMM Corporation

704 Quince Orchard Road

Gaithersburg, MD 20878

Phone: +1-301-721-3000

Fax: +1-301-721-3001

EMail: bnatale@acecomm.com

11. Authors' and Editor's Addresses

Mike Daniele

Compaq Computer Corporation

110 Spit Brook Rd

Nashua, NH 03062

Phone: +1-603-881-1423

EMail: daniele@zk3.dec.com

Bert Wijnen

IBM T.J.Watson Research

Schagen 33

3461 GL Linschoten

Netherlands

Phone: +31-348-432-794

EMail: wijnen@vnet.ibm.com

Mark Ellison (WG editor)

Ellison Software Consulting, Inc.

38 Salem Road

Atkinson, NH 03811

Phone: +1-603-362-9270

EMail: ellison@world.std.com

Dale Francisco (editor)

Cisco Systems

150 Castilian Dr

Goleta CA 93117

Phone: +1-805-961-3642

Fax: +1-805-961-3600

EMail: dfrancis@cisco.com

12. References

[1] Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture for

Describing SNMP Management Frameworks", RFC2571, April 1999.

[2] Rose, M. and K. McCloghrie, "Structure and Identification of

Management Information for TCP/IP-based Internets", STD 16, RFC

1155, May 1990.

[3] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,

RFC1212, March 1991.

[4] Rose, M., "A Convention for Defining Traps for use with the

SNMP", RFC1215, March 1991.

[5] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,

M. and S. Waldbusser, "Structure of Management Information

Version 2 (SMIv2)", STD 58, RFC2578, April 1999.

[6] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,

M. and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,

RFC2579, April 1999.

[7] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,

M. and S. Waldbusser, "Conformance Statements for SMIv2", STD

58, RFC2580, April 1999.

[8] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple

Network Management Protocol", STD 15, RFC1157, May 1990.

[9] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,

"Introduction to Community-based SNMPv2", RFC1901, January

1996.

[10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,

"Transport Mappings for Version 2 of the Simple Network

Management Protocol (SNMPv2)", RFC1906, January 1996.

[11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message

Processing and Dispatching for the Simple Network Management

Protocol (SNMP)", RFC2572, April 1999.

[12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)

for version 3 of the Simple Network Management Protocol

(SNMPv3)", RFC2574, April 1999.

[13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol

Operations for Version 2 of the Simple Network Management

Protocol (SNMPv2)", RFC1905, January 1996.

[14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC

2573, April 1999.

[15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access

Control Model (VACM) for the Simple Network Management Protocol

(SNMP)", RFC2575, April 1999.

[16] Case, J., Mundy, R., Partain, D. and B. Stewart, "Introduction

to Version 3 of the Internet-standard Network Management

Framework", RFC2570, April 1999.

[17] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,

"Management Information Base for Version 2 of the Simple

Network Management Protocol (SNMPv2)", RFC1907, January 1996.

[18] Information processing systems - Open Systems Interconnection -

Specification of Abstract Syntax Notation One (ASN.1),

International Organization for Standardization. International

Standard 8824, (December, 1987).

[19] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB

using SMIv2", RFC2233, November 1997.

[20] Case, J., "FDDI Management Information Base", RFC1285, January

1992.

[21] Krupczak, C. and J. Saperia, "Definitions of System-Level

Managed Objects for Applications", RFC2287, April 1997.

[22] Kalbfleisch, C., Krupczak, C., Presuhn, R. and J. Saperia,

"Application Management MIB", RFC2564, May 1999.

[23] Reynolds, J. and J. Postel, "Assigned Numbers", STD 2, RFC

1700, October 1994.

[24] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,

"Coexistence between Version 1 and Version 2 of the Internet-

standard Network Management Framework", RFC1908, January 1996.

[25] Wijnen, B. and D. Levi, "V2ToV1: Mapping SNMPv2 onto SNMPv1

Within a Bilingual SNMP Agent", RFC2089, January 1997.

[26] Wijnen, B., Carpenter, G., Curran, K., Sehgal, A. and G.

Waters, "Simple Network Management Protocol: Distributed

Protocol Interface, Version 2.0", RFC1592, March 1994.

[27] Bradner, S., "Key words for use in RFCs to Indicate Requirement

Levels", BCP 14, RFC2119, March 1997.

13. Notices

The IETF takes no position regarding the validity or scope of any

intellectual property or other rights that might be claimed to

pertain to the implementation or use of the technology described in

this document or the extent to which any license under such rights

might or might not be available; neither does it represent that it

has made any effort to identify any such rights. Information on the

IETF's procedures with respect to rights in standards-track and

standards-related documentation can be found in BCP-11. Copies of

claims of rights made available for publication and any assurances of

licenses to be made available, or the result of an attempt made to

obtain a general license or permission for the use of such

proprietary rights by implementors or users of this specification can

be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any

copyrights, patents or patent applications, or other proprietary

rights which may cover technology that may be required to practice

this standard. Please address the information to the IETF Executive

Director.

A. Changes relative to RFC2257

Changes on the wire:

- The agentx-Notify-PDU and agentx-Close-PDU now generate an

agentx-Response-PDU.

- The res.error field may contain three new error codes:

parseFailed(266), requestDenied(267), and processingError(268).

Clarifications to the text of the memo:

- Modified the text of step (4) in section 4.2, "Applicability"

to separate the two concerns of row creation, and counters that

count rows.

- The use of the r.range_subid field is more clearly defined in

section 6.2.3, "The agentx-Register-PDU".

- Default priority (127) for registration added to the

description of r.priority in section 6.2.3, "The agentx-

Register-PDU".

- Made the distinction of "administrative processing" PDUs and

"SNMP request processing" PDUs in section 6.1, "AgentX PDU

Header" description of h.type. This distinction is used in the

Elements of Procedure relative to the res.sysuptime and

res.error fields.

- Rewrote portions of text in section 6.2.3, "The agentx-

Register-PDU" to be more explicit about the following points:

- There is a default registration priority of 127.

- Improved the description of r.range_subid, independent of

the prefix in r.region.

- Improved description and examples of how to use the

registration mechanism.

- Added a description for r.upper_bound.

- changed r.region to r.subtree (because the text used the

terms "region", "range", and "OID range" in too loose a

fashion. r.subtree can not represent anything more by

itself than a simple subtree. In conjunction with

r.range_subid and r.upper_bound, it can represent a

"region", that is, a union of subtrees)

- Modified the text in section 6.2.4, "The agentx-Unregister-PDU" to

include a description of u.range_subid and u.upper_bound

- Added use of the `requestDenied' error code in section 7.1.4,

"Processing the agentx-Register-PDU".

- Removed text in section 7, "Elements of Procedure" on parse errors

and protocol errors.

- Added a new section, 7.1, "Processing AgentX Administrative

Messages" which defines common processing and how to use the

`parseError' and `processingError' instead of closing a session,

and how to handle context.

- Removed the common processing text from the other administrative

processing Elements of Procedure sections, and added a reference

to section 7.1, "Processing AgentX Administrative Messages". The

affected sections are:

- 7.1.2, "Processing the agentx-IndexAllocate-PDU"

- 7.1.3, "Processing the agentx-IndexDeallocate-PDU"

- 7.1.4, "Processing the agentx-Register-PDU"

- 7.1.5, "Processing the agentx-Unregister-PDU"

- 7.1.6, "Processing the agentx-AddAgentCaps-PDU"

- 7.1.7, "Processing the agentx-RemoveAgentCaps-PDU"

- 7.1.8, "Processing the agentx-Close-PDU"

- 7.1.10, "Processing the agentx-Notify-PDU"

- 7.1.11, "Processing the agentx-Ping-PDU"

- Reworked the text in section 7.1.1, "Processing the

agentx-Open-PDU" to include new error codes, and, to eliminate

reference to an indicated context.

- Modified the text in Section 7.1.10, "Processing the

agentx-Notify-PDU" to state that context checking is performed.

- Substantially modified the text in section 7.1.4.1, "Handling

Duplicate and Overlapping Subtrees".

- Removed the section on "Using the agentx-IndexAllocate-PDU" and

added section 7.1.4.2, "Registering Stuff". This change is

intended to provide a more concise and a more cohesive

description of how things are supposed to work.

- Modified the test in section 7.1.5, "Processing the

agentx-Unregister-PDU" to require a match on u.range_subid and

on u.upper_bound when these fields were applicable in the

corresponding agentx-Register-PDU.

- Removed all references to "splitting", and all uses of the term

"OID range". The text now refers to regions or subtrees

directly, and relies on rule (1), "Honoring the Registry", in

section 7.2.1, "Dispatching AgentX PDUs".

- Modified text in clause 4(c) of section 7.2.1, "Dispatching

AgentX PDUs", clarifying that the master agent can use its

implementation-specific default timeout value when the timeout

value registered by the subagent is impractical.

- Added text in section 7.2.2, "Subagent Processing" describing

common processing.

- Added an example to the text in section 7.2.5.3, "Processing of

Responses to agentx-GetNext-PDU and agentx-GetBulk-PDU",

and, removed the definition of "contains" from this section.

- Modified text in step (1) of section 7.2.5.5, "Processing of

Responses to agentx-CommitSet-PDUs", eliminating directive for

master agent to ignore additional responses to

agentx-CommitSet-PDUs after the first error response.

- Modified text in section 7.2.5.6, "Processing of Responses to

agentx-UndoSet-PDUs", cleaning up commit/undo elements of

procedure per feedback received on the AgentX email list.

- Modified the text in section 8.1.2, "Operation" to explicitly

prohibit interleaved sends, and, added a caution about

exchanging AgentX messages via TCP.

- Modified text to be more explicit that the OID in the

agentx-Allocate-PDU is an OBJECT-TYPE and does not contain any

instance sub-identifiers.

- Replaced the term "subagent" with the term "session" in many

places throughout the text.

- Modified the text relative to master agent processing of the

agentx-TestSet-PDU, agentx-CommitSet-PDU, and the

agentx-UndoSet-PDU to explicitly state that only "involved"

sessions receive an agentx-CommitSet-PDU, and possibly, an

agentx-UndoSet-PDU.

- Modified the text to use the term "transaction", instead of

"packet" (and others), where appropriate. This helps

distinguish the overall transaction from a particular sequence

of packets or PDUs.

- Modified the text to explicitly state that a session is not

required to support concurrent sets.

- Added section 13, "Notices".

- Added text to section 1, Introduction, relative to BCP 14 key

words.

- Modified text to section 9, Security Considerations, to include

use of BCP 14 key words.

- Modified text to section 9, Security Considerations, to include

IPSEC as a suggested Transport Layer Security.

Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to

others, and derivative works that comment on or otherwise explain it

or assist in its implementation may be prepared, copied, published

and distributed, in whole or in part, without restriction of any

kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this

document itself may not be modified in any way, such as by removing

the copyright notice or references to the Internet Society or other

Internet organizations, except as needed for the purpose of

developing Internet standards in which case the procedures for

copyrights defined in the Internet Standards process must be

followed, or as required to translate it into languages other than

English.

The limited permissions granted above are perpetual and will not be

revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an

"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFCEditor function is currently provided by the

Internet Society.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有