分享
 
 
 

RFC2803 - Digest Values for DOM (DOMHASH)

王朝other·作者佚名  2008-05-31
窄屏简体版  字體: |||超大  

Network Working Group H. Maruyama

Request for Comments: 2803 K. Tamura

Category: Informational N. Uramoto

IBM

April 2000

Digest Values for DOM (DOMHASH)

Status of this Memo

This memo provides information for the Internet community. It does

not specify an Internet standard of any kind. Distribution of this

memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

This memo defines a clear and unambiguous definition of digest (hash)

values of the XML objects regardless of the surface string variation

of XML. This definition can be used for XML digital signature as well

efficient replication of XML objects.

Table of Contents

1. IntrodUCtion............................................2

2. Digest Calculation......................................3

2.1. Overview..............................................3

2.2. Namespace Considerations..............................4

2.3. Definition with Code Fragments........................5

2.3.1. Text Nodes..........................................5

2.3.2. Processing Instruction Nodes........................6

2.3.3. Attr Nodes..........................................6

2.3.4. Element Nodes.......................................7

2.3.5. Document Nodes......................................9

3. Discussion..............................................9

4. Security Considerations.................................9

References................................................10

Authors' Addresses........................................10

Full Copyright Statement..................................11

1. Introduction

The purpose of this document is to give a clear and unambiguous

definition of digest (hash) values of the XML objects [XML]. Two

suBTrees are considered identical if their hash values are the same,

and different if their hash values are different.

There are at least two usage scenarios of DOMHASH. One is as a basis

for digital signatures for XML. Digital signature algorithms normally

require hashing a signed content before signing. DOMHASH provides a

concrete definition of the hash value calculation.

The other is to use DOMHASH when synchronizing two DOM structures

[DOM]. Suppose that a server program generates a DOM structure which

is to be rendered by clients. If the server makes frequent small

changes on a large DOM tree, it is desirable that only the modified

parts are sent over to the client. A client can initiate a request by

sending the root hash value of the structure in the cache memory. If

it matches with the root hash value of the current server structure,

nothing needs be sent. If not, then the server compares the client

hash with the older versions in the server's cache. If it finds one

that matches the client's version of the structure, then it locates

differences with the current version by recursively comparing the

hash values of each node. This way, the client can receive only an

updated portion of a large structure without requesting the whole

thing.

One way of defining digest values is to take a surface string as the

input for a digest algorithm. However, this approach has several

drawbacks. The same internal DOM structure may be represented in may

different ways as surface strings even if they strictly conform to

the XML specification. Treatment of white spaces, selection of

character encodings, entity references (i.e., use of ampersands), and

so on have impact on the generation of a surface string. If the

implementations of surface string generation are different, the hash

values would be different, resulting in unvalidatable digital

signatures and unsuccessful detection of identical DOM structures.

Therefore, it is desirable that digest of DOM is defined in the DOM

terms -- that is, as an unambiguous algorithm operating on a DOM

tree. This is the approach we take in this specification.

Introduction of namespace is another source of variation of surface

string because different namespace prefixes can be used for

representing the same namespace URI [URI]. In the following example,

the namespace prefix "edi" is bound to the URI

"http://ecommerce.org/schema" but this prefix can be arbitrary chosen

without changing the logical contents as shown in the second example.

<?xml version="1.0"?>

<root xmlns:edi='http://ecommerce.org/schema'>

<edi:order>

:

</edi:order>

</root>

<?xml version="1.0"?>

<root xmlns:ec='http://ecommerce.org/schema'>

<ec:order>

:

</ec:order>

</root>

The DOMHASH defined in this document is designed so that the choice

of the namespace prefix does not affect the digest value. In the

above example, both the "root" elements will get the same digest

value.

2. Digest Calculation

2.1. Overview

Hash values are defined on the DOM type Node. We consider the

following five node types that are used for representing a DOM

document structure:

- Text

- ProcessingInstruction

- Attr

- Element

- Document

Comment nodes and Document Type Definitions (DTDs) do not participate

in the digest value calculation. This is because DOM does not

require a conformant processor to create data structures for these.

DOMHASH is designed so that it can be computed with any XML processor

conformant to the DOM or SAX [SAX] specification.

Nodes with the node type EntityReference must be eXPanded prior to

digest calculation.

The digest values are defined recursively on each level of the DOM

tree so that only a relevant part needs to be recalculated when a

small portion of the tree is changed.

Below, we give the precise definitions of digest for these types. We

describe the format of the data to be supplied to a hash algorithm

using a figure and a simple description, followed by a Java code

fragment using the DOM API and the JDK 1.1 Platform Core API only.

Therefore, the semantics should be unambiguous.

As the rule of thumb, all strings are to be in UTF-16BE [UTF16]. If

there is a sequence of text nodes without any element nodes in

between, these text nodes are merged into one by concatenating them.

A zero-length text node is always ignored.

Note that validating and non-validating XML processors may generate

different DOM trees from the same XML document, due to attribute

normalization and default attributes. If DOMHASH is to be used for

testing logical equivalence between two XML documents (as opposed to

DOM trees), it may be necessary to normalize attributes and supply

default attributes prior to DOMHASH calculation.

Some legacy character encodings (such as ISO-2022-JP) have certain

ambiguity in translating into Unicode. This is again dependent on

XML processors. Treatment of such processor dependencies is out of

scope of this document.

2.2. Namespace Considerations

To avoid the dependence on the namespace prefix, we use "expanded

names" to do digest calculation. If an element name or an attribute

name is qualified either by a explicit namespace prefix or by a

default namespace, the name's LocalPart is prepended by the URI of

the namespace (the namespace name as defined in the Namespace

specification [NAM]) and a colon before digest calculation. In the

following example, the default qualified name "order" is expanded

into "http://ecommerce.org/schema:order" while the explicit qualified

name "book:title" is expanded into "urn:loc.gov:books:title" before

digest calculation.

<?xml version="1.0"?>

<root xmlns='http://ecommerce.org/schema'

xmlns:book='urn:loc.gov:books'>

<order>

<book:title> ... </book:title>

:

</order>

</root>

We define an expanded name (either for element or attribute) as

follows:

If a name is not qualified, the expanded name is the name itself.

If a name is qualified with the prefix "xmlns", the expanded name

is undefined.

If a name is qualified either by default or by an explicit

namespace prefix, the expanded name is URI bound to the namespace

+ ":" + LocalPart

In the following example code, we assume that the getExpandedName()

method (which returns the expanded name as defined above) is defined

in both Element and Attr interfaces of DOM.

Note that the digest values are not defined on namespace

declarations. In other Words, the digest value is not defined for an

attribute when

- the attribute name is "xmlns", or

- the namespace prefix is "xmlns".

In the above example, the two attributes which are namespace

declarations do not have digest values and therefore will not

participate in the calculation of the digest value of the "root"

element.

2.3. Definition with Code Fragments

The code fragments in the definitions below assume that they are in

implementation classes of Node. Therefore, a methods call without an

explicit object reference is for the Node itself. For example,

getData() returns the text data of the current node if it is a Text

node. The parameter digestAlgorithm is to be replaced by an

identifier of the digest algorithm, such as "MD5" [MD5] and "SHA-1"

[SHA].

The computation should begin with a four byte integer that represents

the type of the node, such as TEXT_NODE or ELEMENT_NODE.

2.3.1. Text Nodes

The hash value of a Text node is computed on the four byte header

followed by the UTF-16BE encoded text string.

- TEXT_NODE (3) in 32 bit network-byte-ordered integer

- Text data in UTF-16BE stream (variable length)

public byte[] getDigest(String digestAlgorithm) {

MessageDigest md = MessageDigest.getInstance(digestAlgorithm);

md.update((byte)0);

md.update((byte)0);

md.update((byte)0);

md.update((byte)3);

md.update(getData().getBytes("UnicodeBigUnmarked"));

return md.digest();

}

Here, MessageDigest is in the package java.security.*, one of the

built-in packages of JDK 1.1.

2.3.2. ProcessingInstruction Nodes

A ProcessingInstruction (PI) node has two components: the target and

the data. Accordingly, the hash is computed on the concatenation of

both, separated by 'x0000'. PI data is from the first non white

space character after the target to the character immediately

preceding the "?>".

- PROCESSING_INSTRUCTION_NODE (7) in 32 bit network-byte-ordered

integer

- PI target in UTF-16BE stream (variable length)

- 0x00 0x00

- PI data in UTF-16BE stream (variable length)

public byte[] getDigest(String digestAlgorithm) {

MessageDigest md = MessageDigest.getInstance(digestAlgorithm);

md.update((byte)0);

md.update((byte)0);

md.update((byte)0);

md.update((byte)7);

md.update(getName().getBytes("UnicodeBigUnmarked"));

md.update((byte)0);

md.update((byte)0);

md.update(getData().getBytes("UnicodeBigUnmarked"));

return md.digest();

}

2.3.3. Attr Nodes

The digest value of Attr nodes are defined similarly to PI nodes,

except that we need a separator between the expanded attribute name

and the attribute value. The '0x0000' value in UTF-16BE is allowed

nowhere in an XML document, so it can serve as an unambiguous

separator. The expanded name must be used as the attribute name

because it may be qualified. Note that if the attribute is a

namespace declaration (either the attribute name is "xmlns" or its

prefix is "xmlns"), the digest value is undefined and the getDigest()

method should return null.

- ATTRIBUTE_NODE (2) in 32 bit network-byte-ordered integer

- Expanded attribute name in UTF-16BE stream (variable length)

- 0x00 0x00

- Attribute value in UTF-16BE stream (variable length)

public byte[] getDigest(String digestAlgorithm) {

if (getNodeName().equals("xmlns")

getNodeName().startsWith("xmlns:"))

return null;

MessageDigest md = MessageDigest.getInstance(digestAlgorithm);

md.update((byte)0);

md.update((byte)0);

md.update((byte)0);

md.update((byte)2);

md.update(getExpandedName().getBytes("UnicodeBigUnmarked"));

md.update((byte)0);

md.update((byte)0);

md.update(getValue().getBytes("UnicodeBigUnmarked"));

return md.digest();

}

2.3.4. Element Nodes

Element nodes are the most complex because they consist of other

nodes recursively. Hash values of these component nodes are used to

calculate the node's digest so that we can save computation when the

structure is partially changed.

First, all the attributes except for namespace declarations must be

collected. This list is sorted lexicographically by the expanded

attribute names (based on Unicode character code points). When no

surrogate characters are involved, this is the same as sorting in

ascending order in terms of the UTF-16BE encoded expanded attribute

names, using the string comparison operator String.compareTo() in

Java.

- ELEMENT_NODE (1) in 32 bit network-byte-ordered integer

- Expanded element name in UTF-16BE stream (variable length)

- 0x00 0x00

- A number of non-namespace-declaration attributes in 32 bit

network-byte-ordered unsigned integer

- Sequence of digest values of non-namespace-declaration attributes,

sorted lexicographically by expanded attribute names

- A number of child nodes (except for Comment nodes) in 32bit

network-byte-ordered unsigned integer

- Sequence of digest values of each child node except for Comment

nodes (variable length) (A sequence of child texts is merged to one

text. A zero-length text and Comment nodes are not counted as

child)

public byte[] getDigest(String digestAlgorithm) {

MessageDigest md = MessageDigest.getInstance(digestAlgorithm);

ByteArrayOutputStream baos = new ByteArrayOutputStream();

DataOutputStream dos = new DataOutputStream(baos);

dos.writeInt(ELEMENT_NODE);//This is stored in network byte order

dos.write(getExpandedName().getBytes("UnicodeBigUnmarked"));

dos.write((byte)0);

dos.write((byte)0);

// Collect all attributes except for namespace declarations

NamedNodeMap nnm = this.getAttributes();

int len = nnm.getLength()

// Find "xmlns" or "xmlns:foo" in nnm and omit it.

...

dos.writeInt(len); // This is sorted in the network byte order

// Sort attributes lexicographically by expanded attribute

// names.

...

// Assume that `Attr[] aattr' has sorted Attribute instances.

for (int i = 0; i < len; i ++)

dos.write(aattr[i].getDigest(digestAlgorithm));

Node n = this.getFirstChild();

// Assume that adjoining Texts are merged,

// there is no 0-length Text, and

// comment nodes are removed.

len = this.getChildNodes().getLength();

dos.writeInt(len); // This is stored in the network byte order

while (n != null) {

dos.write(n.getDigest(digestAlgorithm));

n = n.getNextSibling();

}

dos.close();

md.update(baos.toByteArray());

return md.digest();

}

2.3.5. Document Nodes

A Document node may have PI nodes before and after the root Element

node. The digest value of a Document node is computed based on the

sequence of the digest values of the pre-root PI nodes, the root

Element node, and the post-root PI nodes in this order. Comment

nodes and DocumentType nodes, if any, are ignored.

- DOCUMENT_NODE (9) in 32 bit network-byte-ordered integer

- A number of child nodes (except for Comment and DocumentType nodes)

in 32bit network-byte-ordered unsigned integer

- Sequence of digest values of each child node except for Comment and

DocumentType nodes (variable length)

public byte[] getDigest(String digestAlgorithm) {

MessageDigest md = MessageDigest.getInstance(digestAlgorithm);

ByteArrayOutputStream baos = new ByteArrayOutputStream();

DataOutputStream dos = new DataOutputStream(baos);

dos.writeInt(DOCUMENT_NODE);//This is stored in network byte order

// Assume that Comment and DocumentType nodes are removed and this

// node has only an Element node and PI nodes.

len = this.getChildNodes().getLength();

dos.writeInt(len); // This is stored in the network byte order

Node n = this.getFirstChild();

while (n != null) {

dos.write(n.getDigest(digestAlgorithm));

n = n.getNextSibling();

}

dos.close();

md.update(baos.toByteArray());

return md.digest();

}

3. Discussion

The definition described above can be efficiently implemented with

any XML processor that is conformant to either DOM and SAX

specification. Reference implementations are available on request.

4. Security Considerations

DOMHASH is expected to be used as the basis for digital signatures

and other security and integrity uses. It's appropriateness for

such uses depends on the security of the hash algorithm used and

inclusion of the fundamental characteristics it is desired to check

in parts of the DOM model incorporated in the digest by DOMHASH.

References

[DOM] "Document Object Model (DOM), Level 1 Specification", October

1998, http://www.w3.org/TR/REC-DOM-Level-1/

[MD5] Rivest, R., "The MD5 Message-Digest Algorithm", RFC1321,

April 1992.

[NAM] Tim Bray, Dave Hollander, Andrew Layman, "Namespaces in XML",

http://www.w3.org/TR/1999/REC-xml-names-19990114.

[SAX] David Megginson, "SAX 1.0: The Simple API for XML",

http://www.megginson.com/SAX/, May 1998.

[SHA] (US) National Institute of Standards and Technology, "Federal

Information Processing Standards Publication 180-1: Secure Hash

Standard", 17 April 1995.

[URI] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform

Resource Identifiers (URI): Generic Syntax", RFC2396, August

1998.

[UTF16] Hoffman, P., Yergeau, F., "UTF-16, an encoding of ISO 10646",

RFC2781, February 2000.

[XML] Tim Bray, Jean Paoli, C. M. Sperber-McQueen, "Extensible

Markup Language (XML) 1.0", http://www.w3.org/TR/1998/REC-xml-

19980210

Authors' Addresses

Hiroshi Maruyama,

IBM Research, Tokyo Research Laboratory

EMail: maruyama@jp.ibm.com

Kent Tamura,

IBM Research, Tokyo Research Laboratory

EMail: kent@trl.ibm.co.jp

Naohiko Uramoto,

IBM Research, Tokyo Research Laboratory

EMail: uramoto@jp.ibm.com

Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to

others, and derivative works that comment on or otherwise explain it

or assist in its implementation may be prepared, copied, published

and distributed, in whole or in part, without restriction of any

kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this

document itself may not be modified in any way, such as by removing

the copyright notice or references to the Internet Society or other

Internet organizations, except as needed for the purpose of

developing Internet standards in which case the procedures for

copyrights defined in the Internet Standards process must be

followed, or as required to translate it into languages other than

English.

The limited permissions granted above are perpetual and will not be

revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an

"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

Funding for the RFCEditor function is currently provided by the

Internet Society.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有