分享
 
 
 

深入讲解数据库性能调优技术中的索引调优

王朝other·作者佚名  2008-05-31
窄屏简体版  字體: |||超大  

一、概述

随着数据库在各个领域的使用不断增长,越来越多的应用提出了高性能的要求。数据库性能调优是知识密集型的学科,需要综合考虑各种复杂的因素:数据库缓冲区的大小、索引的创建、语句改写等等。总之,数据库性能调优的目的在于使系统运行得更快。

调优需要有广泛的知识,这使得它既简单又复杂。

说调优简单,是因为调优者不必纠缠于复杂的公式和规则。许多学术界和业界的研究者都在尝试将调优和查询处理建立在数学基础之上。

称调优复杂,是因为如果要完全理解常识所依赖的原理,还需要对应用、数据库管理系统、操作系统以及硬件有广泛而深刻的理解。

数据库调优技术可以在不同的数据库系统中使用。如果需要调优数据库系统,最好掌握如下知识:1)查询处理、并发控制以及数据库恢复的知识;2)一些调优的基本原则。

这里主要描述索引调优。

二、索引调优

索引是建立在表上的一种数据组织,它能提高访问表中一条或多条记录的特定查询效率。因此,适当的索引调优是很重要的。

对于索引调优存在如下的几个误区:

误区1:索引创建得越多越好?

实际上:创建的索引可能建立后从来未使用。索引的创建也是需要代价的,对于删除、某些更新、插入操作,对于每个索引都要进行相应的删除、更新、插入操作。从而导致删除、某些更新、插入操作的效率变低。

误区2:对于一个单表的查询,可以索引1进行过滤再使用索引2进行过滤?

实际上:假设查询语句如下select * from t1 where c1=1 and c2=2,c1列和c2列上分别建有索引ic1、ic2。先使用ic1(或ic2)进行过滤,产生的结果集是临时数据,不再具有索引,所以不可使用ic2(或ic1)进行再次过滤。

索引优化的基本原则:

1.将索引和数据存放到不同的文件组

没有将表数据和索引数据存储到不同的文件组,而不加区别地将它们存储到同一文件组。这样,不但会造成I/O竞争,也为数据库的维护工作带来不变。

2.组合索引的使用

假设存在组合索引it1c1c2(c1,c2),查询语句select * from t1 where c1=1 and c2=2能够使用该索引。查询语句select * from t1 where c1=1也能够使用该索引。但是,查询语句select * from t1 where c2=2不能够使用该索引,因为没有组合索引的引导列,即,要想使用c2列进行查找,必需出现c1等于某值。

根据where条件的不同,归纳如下:

1)c1=1 and c2=2:使用索引it1c1c2进行等值查找。

2) c1=1 and c2>2:使用索引it1c1c2进行范围查找,可以有两种方法。

方法1,使用通过索引键(1,2)在B树中命中一条记录,然后向后扫描找出 第一条符合条件的记录,从此记录往后的每一条记录都是符合条件的。这种方法的弊端在于:如果c1=1 and c2=2对应的记录数很多,会产生很多无效的扫描。

方法2,如果c2对应的int型数据,可以使用索引键(1,3)在B树中命中一条记录,从此记录往后的每一条记录都是符合条件的。

本文中的例子均采用方法1。

3)c1>1 and c2=2:因为索引的第一个列不是等于号的,索引即使后面出现了c2=2,也不能将c2=2应用于索引查找。这里,通过索引键(1,- ∞)在B树中命中一条记录,向后扫描找出第一条符合c1>1的记录,此后的每一条记录判断是否符合c2=2,如果符合则输出,否则过滤掉。这里我们称c2=2没有参与到索引运算中去。这种情况在实际应用中经常出现。

4)c1>1:通过索引键(1,- ∞) 在B树中命中一条记录,以此向后扫描找出第一条符合c1>1的记录,此后的每条记录都是符合条件的。

3.唯一索引与非唯一索引的差异

假设索引int1c1(c1)是唯一索引,对于查询语句select c1 from t1 where c1=1,达梦数据库使用索引键(1)命中B树中一条记录,命中之后直接返回该记录(因为是唯一索引,所以最多只能有一条c1=1的记录)。

假设索引it1c2(c2)是非唯一索引,对于查询语句select c2 from t2 where c2=2,达梦数据库使用索引键(2)命中B树中一条记录,返回该记录,并继续向后扫描,如果该记录是满足c=2,返回该记录,继续扫描,直到遇到第一条不符合条件c2=2的记录。

于是,我们可以得知,对于不存在重复值的列,创建唯一索引优于创建非唯一索引。

4.非聚集索引的作用

每张表只可能一个聚集索引,聚集索引用来组织真实数据。语句“create table employee (id int cluster primary key,name varchar(20),addr varchar(20))”。表employee的数据用id来组织。如果要查找id=1000的员工记录,只要用索引键(1000)命中该聚集索引。但是,对于要查找name=’张三’的员工记录就不能使用该索引了,需要进行全表扫描,对于每一条记录判断是否满足name=’张三’,这样会导致查询效率非常低。

要使用聚集索引,必需提供id,我们只能提供name,于是需要引入一个辅助结构实现name到id的转换,这就是非聚集索引的作用。该非聚集索引的键是name,值是id。于是语句“select * from employee where name=’张三’”的执行流程是:通过键(’张三’)命中非聚集索引,得到对应的id值3(假设’张三’对应的id为3),然后用键(3)命中聚集索引,得到相应的记录。

5.是不是使用非聚集索引的查询都需要进行聚集的查询?

不是的,虽然在上一点中查询转换为聚集索引的查找,有时候可以只需要使用非聚集索引。

创建表并创建相应的索引:create table t1(c1 int,c2 int,c3 int);create index it1c2c3 on t1(c2,c3)。查询语句为:select c3 from t1 where c2=1。

因为索引it1c2c3(c2,c3)覆盖查询语句中的列(c2,c3)。所以,该查询语句的执行流程为:通过索引键(1,- ∞)命中索引it1c2c3,对于该记录直接返回c3对应的值,继续向后扫描,如果索引记录中c1还是等于1,那么输出c3,以此类推,直到出现第一条c1不等于1的索引记录,结束查询。

6.创建索引的规则

创建索引首先要考虑的是列的可选择性。比较一下列中唯一键的数量和表中记录的行数,就可以判断该列的可选择性。如果该列的“唯一键的数量/表中记录行数”的比值越接近于1,则该列的可选择行越高。在可选择性高的列上进行查询,返回的数据就较少,比较适合索引查询。相反,比如性别列上只有两个值,可选择行就很小,不适合索引查询。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有