分享
 
 
 

Effective C++: Item 32

王朝vc·作者佚名  2006-01-08
窄屏简体版  字體: |||超大  

Item 32: Postpone variable definitions as long as possible.So you subscribe to the C philosophy that variables should be defined at the beginning of a block. Cancel that subscription! In C++, it's unnecessary, unnatural, and expensive.

Remember that when you define a variable of a type with a constructor or destructor, you incur the cost of construction when control reaches the variable's definition, and you incur the cost of destruction when the variable goes out of scope. This means there's a cost associated with unused variables, so you want to avoid them whenever you can.

Suave and sophisticated in the ways of programming as I know you to be, you're probably thinking you never define unused variables, so this Item's advice is inapplicable to your tight, lean coding style. You may need to think again. Consider the following function, which returns an encrypted version of a password, provided the password is long enough. If the password is too short, the function throws an exception of type logic_error, which is defined in the standard C++ library (see Item 49):

// this function defines the variable "encrypted" too soon

string encryptPassword(const string& password)

{

string encrypted;

if (password.length() < MINIMUM_PASSWORD_LENGTH) {

throw logic_error("Password is too short");

}

do whatever is necessary to place an encrypted

version of password in encrypted;

return encrypted;

}

The object encrypted isn't completely unused in this function, but it's unused if an exception is thrown. That is, you'll pay for the construction and destruction of encrypted even if encryptPassword throws an exception. As a result, you're better off postponing encrypted's definition until you know you'll need it:

// this function postpones "encrypted"'s definition until

// it's truly necessary

string encryptPassword(const string& password)

{

if (password.length() < MINIMUM_PASSWORD_LENGTH) {

throw logic_error("Password is too short");

}

string encrypted;

do whatever is necessary to place an encrypted

version of password in encrypted;

return encrypted;

}

This code still isn't as tight as it might be, because encrypted is defined without any initialization arguments. That means its default constructor will be used. In many cases, the first thing you'll do to an object is give it some value, often via an assignment. Item 12 explains why default-constructing an object and then assigning to it is a lot less efficient than initializing it with the value you really want it to have. That analysis applies here, too. For example, suppose the hard part of encryptPassword is performed in this function:

void encrypt(string& s); // encrypts s in place

Then encryptPassword could be implemented like this, though it wouldn't be the best way to do it:

// this function postpones "encrypted"'s definition until

// it's necessary, but it's still needlessly inefficient

string encryptPassword(const string& password)

{

... // check length as above

string encrypted; // default-construct encrypted

encrypted = password; // assign to encrypted

encrypt(encrypted);

return encrypted;

}

A preferable approach is to initialize encrypted with password, thus skipping the (pointless) default construction:

// finally, the best way to define and initialize encrypted

string encryptPassword(const string& password)

{

... // check length

string encrypted(password); // define and initialize

// via copy constructor

encrypt(encrypted);

return encrypted;

}

This suggests the real meaning of "as long as possible" in this Item's title. Not only should you postpone a variable's definition until right before you have to use the variable, you should try to postpone the definition until you have initialization arguments for it. By doing so, you avoid not only constructing and destructing unneeded objects, you also avoid pointless default constructions. Further, you help document the purpose of variables by initializing them in contexts in which their meaning is clear. Remember how in C you're encouraged to put a short comment after each variable definition to explain what the variable will eventually be used for? Well, combine decent variable names (see also Item 28) with contextually meaningful initialization arguments, and you have every programmer's dream: a solid argument for eliminating some comments.

By postponing variable definitions, you improve program efficiency, increase program clarity, and reduce the need to document variable meanings. It looks like it's time to kiss those block-opening variable definitions good-bye.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有