主题: MY FIRST COREWAR BOOK 第一章
译者: Michael Zeng [michaelz2000@21cn.com]
日期: 02-5-10 12:53
*转载请勿删改,谢谢*
MY FIRST COREWAR BOOK
-------
前言
-------
本书搜集了一些COREWAR战士及其注释. 我假设大家都懂得ICWS '88 redcode语言
(详见 M.Durham的指南.1 和 指南.2 (译者:我也译了)). 除非特别指出,所有
redcode都遵循ICWS '88,且按磁芯大小为8000,进程限制8000设计. 所有本文提到
的文章都可以在匿名FTP - ftp.csua.berkeley.edu 的子目录 pub/corewar/中找到.
在简短的介绍之后,每一章都以战士的名称为标题. 我将对它们逐一评价,并给出一些提示.
对其他值得进一步研究的战士我也将提及到. 除非特别指出,这些战士都可以在
redcode/目录里的warrior10.tar找到.
-------
PREFACE
-------
This book is an introductory collection of corewar warriors with
commentary. It assumes an acquaintance with the ICWS '88 redcode language
(See M.Durham's tutorial.1 and tutorial.2 for details). Unless otherwise
noted, all redcode is written in ICWS '88 and is designed for a coresize of
8000, process limit 8000. All documents referred to in this text are
available by anonymous FTP at ftp.csua.berkeley.edu in one of the
subdirectories of pub/corewar/.
After a brief introduction, each chapter presents warriors by subject. I
then pontificate on the merits of these various warriors and give some
hints for successful implementation. I mention credits and give references
to other warriors worth further investigation. Unless otherwise indicated,
these warriors are archived in warrior10.tar in the redcode/ directory.
每个战士的描述大概都是相似的形式. 首先,给出战士的参数. 包括名字,作者,
攻击速度, 有效长度, 耐久力, 和威力, 以及对Pizza Hill的得分. 有效长度是
指攻击阶段执行代码的长度,包括再生的代码. 然后,给出自身包含的源代码和简单
描述. 最后, 在技术上详细分析战士的运行.
我希望这有点帮助. 如果你有问题或建议, 请寄到morrell@math.utah.edu,
有效期至1994六月
史提芬 莫尔 Steven Morrell
The presentation of each warrior follows roughly the same format. First,
the parameters of the warrior are given. These include the name, author,
attack speed, effective size, durability, and effectiveness, and score
against the Pizza Hill. The effective size is the size of the executing
code during the attack phase, taking into account regenerative code. Next,
self-contained source code is given, followed by a brief description of the
warrior. Finally, a detailed technical description of how the warrior runs
is given.
I hope that this helps. If you have questions or comments, send them to
morrell@math.utah.edu, where you can reach me until June,1994
Steven Morrell
---------------------
第1章: Imp-Rings
---------------------
1992年10月14日,A.Ivner 发布了一个大大改革磁芯大战的战士. "The IMPire strikes back"
在Intel hill取得大约170分,负率只有10%,这令它牢牢地站在了第一位.
A.Ivner 发明了一种通过imp来杀死对手的方法 -- 世界第一个imp环(imp-ring).
D.Nabutovsky 在他的"Impressive"里改进了imp环的启动代码来通过制造imp螺旋(imp-spiral)
并加入了石头(stone), 使它在hill里的负率仅为2%,得分是195 (关于石头(stones),请看第2章).
从此,hill里大部分战士都带有imp或反imp的程序.
这章从 A.K.Dewdney 在《科学的美国》的原创文章中提议的imp,到现代我们视为许多成功战士的
组件imp螺旋(imp-spiral)来讲述imp.
---------------------
Chapter 1: Imp-Rings
---------------------
On October 14, 1992, A.Ivner posted a warrior that revolutionized the
game of corewar. "The IMPire strikes back" scored about 170 on the Intel
hill and only suffered 10% losses, putting it firmly in first place.
A.Ivner had invented a way to kill other programs with imps -- the world's
first imp-ring. D.Nabutovsky improved the launch code a bit by making an
imp-spiral and adding a stone in his "Impressive", which lost only 2% and
scored 195 when it started on the hill (for more information on stones, see
chapter 2). Since that time, most warriors on the hill have either been
imps or something hostile to imps.
This chapter deals with imps, from the basic imp proposed by A.K.Dewdney in
the original Scientific American articles to the modern-day imp-spiral we
see as a component of many successful warriors.
--1--
名称: Wait 等待
速度: 没有
长度: 1
耐久力: 强大
威力: 没有
得分:
wait JMP wait
end wait
Wait是最简单的战士.它很小所以很难被找到.
然而,它不会攻击, 所以只有当对手自毁时它才能胜利.
我们把它当作素材.
--1--
Name: Wait
Speed: None
Size: 1
Durability: Strong
Effectiveness: None
Score:
wait JMP wait
end wait
Wait is the simplest warrior. Its small size makes it difficult to locate.
However, it has no attack, so it only wins if the enemy program
self-destructs. We shall be using this program for fodder.
--2--
名称: Imp 顽童
作者: A.K.Dewdney
速度: c的100% (连续)
长度: 1
耐久力: 强大
威力: 弱
得分:
imp MOV imp, imp+1
end imp
Imp 给对手一个很小的移动目标,除非被直接命中,否则不会死亡.
它常常打平, 且容易受imp门(imp-gate)的攻击.
(见程序3)
--2--
Name: Imp
Author: A.K.Dewdney
Speed: 100% of c (sequential)
Size: 1
Durability: Strong
Effectiveness: Poor
Score:
imp MOV imp, imp+1
end imp
Imp presents the enemy with a small, moving target that will not die
without a direct hit. It ties a lot, and is vulnerable to the imp-gate.
(See program 3)
工作原理: 在Imp载入且在执行之前, 它是这样的:
MOV 0,1 (1)
((1)表示将在第一次循环执行的指令.) 当(1)执行, 它把自己复制到下一个地址,然后
移动到下一条指令:
MOV 0,1 ;原始指令
MOV 0,1 (2) ;复制品
现在执行(2). 因为所以的寻址都是相对的, 复制品又把自己负责打下一地址,继续前进.
MOV 0,1
MOV 0,1
MOV 0,1 (3) ;第二个复制品
它一直前进,把遇到的所有东西用 MOV 0,1 指令覆盖.
所以当它遇到敌对代码时, 它也把敌对代码用 MOV 0,1指令覆盖了, 令敌人进程变成imp.
注意,虽然敌对代码没有了, 但敌对进程还在, 所以除非敌人自毁,否则imp赢不了.
HOW IT WORKS: When Imp is loaded and before it executes, it looks like
this:
MOV 0,1 (1)
(The (1) shows which instruction will execute on the first cycle.) When
process (1) executes, it first copies its instruction to the next address
and then moves to the next instruction:
MOV 0,1 ;This is the original.
MOV 0,1 (2) ;This is the copy.
Process (2) now executes. Since all addressing is relative, the process
copies its instruction to the next address and advances.
MOV 0,1
MOV 0,1
MOV 0,1 (3) ;This is the second copy.
And so it goes, overwriting anything in its path with MOV 0,1 instructions.
So when it encounters enemy code, it replaces the enemy code with MOV 0,1
instructions, turning the enemy processes into imps. Note that although
the enemy code is gone, the enemy processes live on, so imps do not win
unless the enemy code self-destructs.
--3--
名称: Imp Gate 顽童门
速度: None
长度: 1
耐久力: 强大
威力: 对imp非常优秀,对其他非常弱
得分:
gate equ wait-10
wait JMP wait,<gate
end wait
Imp门(Imp Gate)等待imp通过它前面10条指令并摧毁imp. 它很少被imp干掉,且很小不容易
定位. Imp门天生就是自卫用的,无法击败固定的敌人,除非敌人自毁.
--3--
Name: Imp Gate
Speed: None
Size: 1
Durability: Strong
Effectiveness: Excellent against imps, Extremely Poor against others
Score:
gate equ wait-10
wait JMP wait,<gate
end wait
Imp Gate waits and destroys imps that happen to pass 10 instructions before
it. It is seldom overrun by imps and its small size makes it difficult to
locate. The imp gate is defensive by nature, and will not win against a
stationary enemy unless this enemy self-destructs.
工作原理: 在_wait_处进程跳转到这个命令的A-值, 也就是回到_wait_处.
可是, 它也在消耗(减一操作)_gate_的B-字段. 这样,_gate_的B-字段每个回合都被消耗(减1).
当敌对的imp来到的时候就会这样:
MOV 0,1 (x) ;imp来啦
DAT 0,-5 ;这是门
imp复制自己并且前进:
MOV 0,1
MOV 0,1 (x+1) ;这是门
门消耗(减一):
(译者:decrement译成什么好呢?)
MOV 0,1
MOV 0,0 (x+1) ;这是门
imp复制指令到自己 (就是没有效果) 并前进, 掉入了尽头(译者:摔死了~):
MOV 0,1
MOV 0,0 ;这是门
(x+2)
门再次消耗(但已经造成了伤害.)
MOV 0,1
MOV 0,-1 ;这是门
(x+2)
敌人进程执行了一条非法指令死掉了.
HOW IT WORKS: The process running at _wait_ jumps to the A-value of this
command, i.e. back to _wait_. However, it also decrements the B-field of
_gate_. Thus, the B-field of _gate_ is decremented every turn. When an
enemy imp comes by this is what happens:
MOV 0,1 (x) ;here comes the imp
DAT 0,-5 ;here is the gate
The imp copies itself and advances onto the gate:
MOV 0,1
MOV 0,1 (x+1) ;here is the gate
The gate decrements:
MOV 0,1
MOV 0,0 (x+1) ;here is the gate
The imp copies this instruction to itself (effectively doing nothing) and
advances, falling off the end:
MOV 0,1
MOV 0,0 ;here is the gate
(x+2)
The gate decrements again (but the damage has already been done.)
MOV 0,1
MOV 0,-1 ;here is the gate
(x+2)
The enemy process executes an illegal instruction and dies.
--4--
名称: Worm 蠕虫
速度: c的25% (线性)
长度: 1.75
耐久力: 非常强壮
威力: 弱
得分:
launch SPL b
SPL ab
aa JMP imp
ab JMP imp+1
b SPL bb
ba JMP imp+2
bb JMP imp+3
imp MOV imp,imp+1
end launch
Worm是几个imp的共生体. worm易受攻击的部分只有尾部指令和即将执行的指令,因此有效长度是
1.75 (有25%的时间, 尾部指令就是即将执行的指令.) 它很难被杀死, 因为每个imp必须单独处理.
但是, 它仍然易受imp门(imp gates)的攻击. 和Imp一样, Worm覆盖敌代码但保留敌进程.
--4--
Name: Worm
Speed: 25% of c (linear)
Size: 1.75
Durability: Very Strong
Effectiveness: Poor
Score:
launch SPL b
SPL ab
aa JMP imp
ab JMP imp+1
b SPL bb
ba JMP imp+2
bb JMP imp+3
imp MOV imp,imp+1
end launch
Worm is a symbiotic collection of imps. The only vulnerable parts of the
worm is the tail instruction and the instruction about to execute, hence the
effective size of 1.75 (25% of the time, the tail instruction is the
instruction about to execute.) It is very difficult to kill, because each
imp must be disposed of individually. However, it is still vulnerable to
imp gates. As with Imp, Worm overwrites enemy code but preserves enemy
processes.
工作原理:
首先, 我们运行worm:
SPL 4,0 (1)
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
第1个进程分裂为进程 (2) 和 (3):
SPL 4,0
SPL 2,0 (2)
JMP 5,0
JMP 5,0
SPL 2,0 (3)
JMP 4,0
JMP 4,0
MOV 0,1
进程(2)分裂为进程 (4) 和 (5):
SPL 4,0
SPL 2,0
JMP 5,0 (4)
JMP 5,0 (5)
SPL 2,0 (3)
JMP 4,0
JMP 4,0
MOV 0,1
进程(3)分裂:
SPL 4,0
SPL 2,0
JMP 5,0 (4)
JMP 5,0 (5)
SPL 2,0
JMP 4,0 (6)
JMP 4,0 (7)
MOV 0,1
进程(4) 跳转:
SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0 (5)
SPL 2,0
JMP 4,0 (6)
JMP 4,0 (7)
MOV 0,1 (8)
进程 (5), (6) 和 (7) 跳转:
SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1 (8)
(9)
(10)
(11)
worm现在开始在内存中蠕动前进. 注意,如果进程(9), (10) 或 (11) 现在执行, 将会执行到
非法指令死掉. 但执行了进程 (8) , 复制MOV指令到进程(9)将要执行到的地方:
SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
MOV 0,1 (9) (12)
(10)
(11)
现在执行进程 (9) , 复制MOV指令到进程(10).
SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
MOV 0,1 (12)
MOV 0,1 (10) (13)
(11)
(10) 和 (11) 执行后, worm 蠕动前进了一条指令, 在后面留下粘糊糊的MOV 0,1痕迹.
SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
MOV 0,1 (12)
MOV 0,1 (13)
MOV 0,1 (14)
MOV 0,1 (15)
HOW IT WORKS:
First, we launch the worm using a binary launch:
SPL 4,0 (1)
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
The first process splits into processes (2) and (3):
SPL 4,0
SPL 2,0 (2)
JMP 5,0
JMP 5,0
SPL 2,0 (3)
JMP 4,0
JMP 4,0
MOV 0,1
Process (2) splits into processes (4) and (5):
SPL 4,0
SPL 2,0
JMP 5,0 (4)
JMP 5,0 (5)
SPL 2,0 (3)
JMP 4,0
JMP 4,0
MOV 0,1
Process (3) splits:
SPL 4,0
SPL 2,0
JMP 5,0 (4)
JMP 5,0 (5)
SPL 2,0
JMP 4,0 (6)
JMP 4,0 (7)
MOV 0,1
Process (4) jumps:
SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0 (5)
SPL 2,0
JMP 4,0 (6)
JMP 4,0 (7)
MOV 0,1 (8)
Processes (5), (6) and (7) jump:
SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1 (8)
(9)
(10)
(11)
The worm will now start crawling though memory. Note that if processes
(9), (10) or (11) executed right now, they would execute an illegal
instruction and die. But process (8) executes, copying the MOV instruction
to where process (9) is going to execute:
SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
MOV 0,1 (9) (12)
(10)
(11)
Now process (9) executes, copying the MOV instruction to process (10).
SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
MOV 0,1 (12)
MOV 0,1 (10) (13)
(11)
And after (10) and (11) have executed, the worm has crawled forward an
instruction, leaving a slimy MOV 0,1 trail behind.
SPL 4,0
SPL 2,0
JMP 5,0
JMP 5,0
SPL 2,0
JMP 4,0
JMP 4,0
MOV 0,1
MOV 0,1 (12)
MOV 0,1 (13)
MOV 0,1 (14)
MOV 0,1 (15)
--5--
名称: Ring 环
速度: c的100% (接近线性)
长度: 1
耐久力: 一般
威力: 好
得分:
c JMP imp-2666
launch SPL c
SPL imp+2667
imp MOV 0,2667
end launch
Ring 是3个imp分布在磁芯的共生体. 它能摧毁它越过的敌进程,如果敌人只有1个或2个进程.
这个代码只能在磁芯大小为8000的情况下正确运行, 尽管可以改变常数来在任意不能被3整除
的磁芯大小下运行. Ring 是一个3点imp的例子.
--5--
Name: Ring
Speed: 100% of c (mostly linear)
Size: 1
Durability: Average
Effectiveness: Fair
Score:
c JMP imp-2666
launch SPL c
SPL imp+2667
imp MOV 0,2667
end launch
Ring is a symbiotic collection of three imps distributed through core. It
has the capability to destroy enemy processes it overruns, if the enemy is
running only one or two processes. This code will run correctly only in a
coresize of 8000, although the constants may be tweaked to run in any
coresize not divisible by 3. Ring is an example of a 3-pt imp.
工作原理: 启动代码很小:
JMP -2663, 0
SPL 0, 0 (1)
SPL 2668, 0
MOV 0,2667
(1)分裂:
JMP -2663, 0 (3)
SPL 0, 0
SPL 2668, 0 (2)
MOV 0,2667
(2)分裂:
JMP -2663, 0 (3)
SPL 0, 0
SPL 2668, 0
MOV 0,2667 (4)
...
(5) ;这里是imp后面2667条指令
(3)跳转:
MOV 0,2667 (4)
...
(5) ;这里是imp后面2667条指令
...
(6) ;这里是进程(2)后面2667条指令
现在有点乐趣了. (4)执行, 复制imp指令到(5) 并开始(7):
MOV 0,2667
(7)
...
MOV 0,2667 (5)
...
(6)
(5) 执行, 复制imp指令到(6):
MOV 0,2667
(7)
...
MOV 0,2667
(8)
...
MOV 0,2667 (6)
(6) 执行, 复制imp指令回(7):
MOV 0,2667
MOV 0,2667 (7)
...
MOV 0,2667
(8)
...
MOV 0,2667
(9)
循环再次开始, ring也向前蔓延.
让我们来看看Ring对Wait(程序1)的战斗. Wait执行 JMP 0,0 直到最终被Ring用
MOV 0,2667覆盖这条指令.
MOV 0,2667 (1)
Wait执行这条指令并且前进:
MOV 0,2667
(2)
因为Ring要用3个周期来写下一条命令, Wait的进程现在执行了非法指令死掉.
所以Ring慢慢地在磁芯里前进, 所以如果敌人只有一个进程, 就会掉进imp环的尽头.
HOW IT WORKS: The launching code is a very small binary startup:
JMP -2663, 0
SPL 0, 0 (1)
SPL 2668, 0
MOV 0,2667
The first process splits:
JMP -2663, 0 (3)
SPL 0, 0
SPL 2668, 0 (2)
MOV 0,2667
The second process splits:
JMP -2663, 0 (3)
SPL 0, 0
SPL 2668, 0
MOV 0,2667 (4)
...
(5) ;this location is 2667 instructions after the imp
The third process jumps:
MOV 0,2667 (4)
...
(5) ;this location is 2667 instructions after the imp
...
(6) ;this location is 2667 instructions after process (2)
Now the fun begins. Process (4) executes, copying the imp instruction to
process (5) and becoming process (7):
MOV 0,2667
(7)
...
MOV 0,2667 (5)
...
(6)
(5) executes, copying the imp instruction to process (6):
MOV 0,2667
(7)
...
MOV 0,2667
(8)
...
MOV 0,2667 (6)
And now (6) executes, copying the imp instruction back to process (7):
MOV 0,2667
MOV 0,2667 (7)
...
MOV 0,2667
(8)
...
MOV 0,2667
(9)
The cycle starts all over again, and the ring creeps forward.
Let's see what happens when Ring fights Wait (Program 1). Wait executes
JMP 0,0 until eventually Ring overwrites this instruction with MOV 0,2667.
MOV 0,2667 (1)
Wait executes this instruction and advances:
MOV 0,2667
(2)
Since Ring takes 3 cycles to move the next command into place, Wait's
process now executes an illegal instruction and dies.
So Ring slowly advances through core, and if the enemy is running a single
process, it falls off the end of the imp ring.
--6--
名称: Spiral 螺旋
速度: c的37.5%(大致线性)
长度: 1.875
耐久力: 很强
威力: 好
得分:
step equ 2667
launch SPL 8
SPL 4
SPL 2
JMP imp
JMP imp+step
SPL 2
JMP imp+(step*2)
JMP imp+(step*3)
SPL 4
SPL 2
JMP imp+(step*4)
JMP imp+(step*5)
SPL 2
JMP imp+(step*6)
JMP imp+(step*7)
imp MOV 0,step
end launch
Spiral同时具有worm的耐久力和ring的威力.
Spiral能抵抗大部分常规攻击, 且因为它是8进程的imp环(imp-ring), 它能杀死任何被它覆盖的
少于8进程的敌人. 仅有的易受攻击点是spiral的尾部和当前运行的进程. 尽管如此Spiral还是被
imp门(imp gates)克制.
--6--
Name: Spiral
Speed: 37.5% of c (mostly linear)
Size: 1.875
Durability: Very Strong
Effectiveness: Fair
Score:
step equ 2667
launch SPL 8
SPL 4
SPL 2
JMP imp
JMP imp+step
SPL 2
JMP imp+(step*2)
JMP imp+(step*3)
SPL 4
SPL 2
JMP imp+(step*4)
JMP imp+(step*5)
SPL 2
JMP imp+(step*6)
JMP imp+(step*7)
imp MOV 0,step
end launch
Spiral crosses the durability of a worm with the effectiveness of a ring.
Spiral is resistant to most conventional attacks, and since it is an
8-process imp-ring, it kills any enemy it overwrites if the enemy has less
than 8 processes running. The only vulnerable parts of the spiral are the
tail and the process that is currently running. Spiral is vulnerable to
imp gates, however.
工作原理: 启动后,进程分配如下:
MOV 0,2667 (16)
(19) ;这里是(18)后的2667条指令
(22)
...
(17) ;这里是(16)后的2667条指令
(20)
(23)
...
(18) ;这里是(17)后的2667条指令
(21)
现在spiral向前蠕动: (16) 复制imp到(17), (17)复制到(18),如此类推.
这时所有进程前进1条指令,然后imp传递指令再次开始.
一步一步地分析imp门(imp gates)怎样摧毁spirals是冗长和无必要的. 关键是:
imp门(imp gate) 是不停被改变的. 当imp通过imp门,imp指令无法完整复制到下
一进程的位置.下一进程将执行到非法指令死掉. 这重复发生直到整个spiral通过
imp门并被分解.
HOW IT WORKS: After a binary launch, the processes are arranged as
follows:
MOV 0,2667 (16)
(19) ;this process is 2667 instructions after process (18)
(22)
...
(17) ;this process is 2667 instructions after process (16)
(20)
(23)
...
(18) ;this process is 2667 instructions after process (17)
(21)
Now the spiral worms along: (16) copies the imp to (17), which copies it to
(18), and so on. All the processes advance 1 instruction as this happens,
and then the imp-passing instructions begin again.
A step-by step analysis of how imp gates destroy spirals would be lengthy
and unnecessarily complicated. The key idea is this: The imp gate is
constantly being modified. As the imp overruns the imp gate, no imp
instructions are left intact to copy to the next processes' location.
This next process executes an illegal instruction and dies. This scenario
repeats until the entire spiral moves through the imp gate and
disintegrates.
--7--
名称: Gate Crashing Spiral 破门螺旋
速度: c的12.5%(通常是线性的)
长度: 5.875
耐久力: 非常强
威力: 强
得分:
step1 equ 2667
step2 equ 2668
start SPL lnch1
SPL lnch3
lnch2 SPL 8
SPL 4
SPL 2
JMP imp2+(step2*0)
JMP imp2+(step2*1)
SPL 2
JMP imp2+(step2*2)
JMP imp2+(step2*3)
SPL 4
SPL 2
JMP imp2+(step2*4)
JMP imp2+(step2*5)
SPL 2
JMP imp2+(step2*6)
JMP imp2+(step2*7)
lnch3 SPL 8
SPL 4
SPL 2
JMP imp3+(step2*0)
JMP imp3+(step2*1)
SPL 2
JMP imp3+(step2*2)
JMP imp3+(step2*3)
SPL 4
SPL 2
JMP imp3+(step2*4)
JMP imp3+(step2*5)
SPL 2
JMP imp3+(step2*6)
JMP imp3+(step2*7)
lnch1 SPL 8
SPL 4
SPL 2
JMP imp1+(step2*0)
JMP imp1+(step2*1)
SPL 2
JMP imp1+(step2*2)
JMP imp1+(step2*3)
SPL 4
SPL 2
JMP imp1+(step2*4)
JMP imp1+(step2*5)
SPL 2
JMP imp1+(step2*6)
JMP imp1+(step2*7)
imp1 MOV 0,step1
DAT #0
DAT #0
DAT #0
imp2 MOV 0,step2
MOV 0,step2
imp3 MOV 0,step2
MOV 0,step2
end start
Gate Crashing Spiral由3个螺旋结合起来杀死imp门(imp gates).
第一个是标准的imp螺旋,其余两个稍微改动过,通过交叉储存来提供更强的保护
以对抗分裂炸弹(split bombs).
由于启动代码很大,它很容易被对手的快攻克制.
--7--
Name: Gate Crashing Spiral
Speed: 12.5% of c (mostly linear)
Size: 5.875
Durability: Very Strong
Effectiveness: Good
Score:
step1 equ 2667
step2 equ 2668
start SPL lnch1
SPL lnch3
lnch2 SPL 8
SPL 4
SPL 2
JMP imp2+(step2*0)
JMP imp2+(step2*1)
SPL 2
JMP imp2+(step2*2)
JMP imp2+(step2*3)
SPL 4
SPL 2
JMP imp2+(step2*4)
JMP imp2+(step2*5)
SPL 2
JMP imp2+(step2*6)
JMP imp2+(step2*7)
lnch3 SPL 8
SPL 4
SPL 2
JMP imp3+(step2*0)
JMP imp3+(step2*1)
SPL 2
JMP imp3+(step2*2)
JMP imp3+(step2*3)
SPL 4
SPL 2
JMP imp3+(step2*4)
JMP imp3+(step2*5)
SPL 2
JMP imp3+(step2*6)
JMP imp3+(step2*7)
lnch1 SPL 8
SPL 4
SPL 2
JMP imp1+(step2*0)
JMP imp1+(step2*1)
SPL 2
JMP imp1+(step2*2)
JMP imp1+(step2*3)
SPL 4
SPL 2
JMP imp1+(step2*4)
JMP imp1+(step2*5)
SPL 2
JMP imp1+(step2*6)
JMP imp1+(step2*7)
imp1 MOV 0,step1
DAT #0
DAT #0
DAT #0
imp2 MOV 0,step2
MOV 0,step2
imp3 MOV 0,step2
MOV 0,step2
end start
Gate Crashing Spiral is a collection of three spirals that work together to
kill imp gates. The first is a standard imp spiral and the other two are
slightly modified, interleaved for greater protection against split bombs.
The large size of its launch code makes it vulnerable to fast attacks.
工作原理: 每个螺旋都有自身的启动代码. 第一个螺旋首先启动并爬行一条指令,此时
其余两个螺旋也启动了. 磁芯看起来象这样 (为了方便起见,重新设置了计数器):
MOV 0,2667 ;这里是标签imp1 | MOV 0,2667 | MOV 0,2667
MOV 0,2667 (17) | MOV 0,2667 (18) | MOV 0,2667 (19)
MOV 0,2667 (20) | MOV 0,2667 (21) | MOV 0,2667 (22)
DAT #0,#0 (23) | (24) |
MOV 0,2668 (1) ;这里是标签imp2 | |
MOV 0,2668 | (2) |
MOV 0,2668 (9) ;这里是标签imp3 | | (3)
MOV 0,2668 | (10) |
(4) | | (11)
| (5) |
(12) | | (6)
| (13) |
(7) | | (14)
| (8) |
(15) | |
| (16) |
这些imp象往常一样向前移动.
当gate crashing spiral通过门(gate), 第二或第三个螺旋首先碰撞:
MOV 0,2668 (x) ;这是imp门
门消耗(减一操作)了:
MOV 0,2667 (x)
受伤的螺旋复制自己到前面2667条指令处:
MOV 0,2667
(x+24)
...
MOV 0,2667
现在这个螺旋就掉进尽头死掉了, 然后第一个螺旋来到门处:
MOV 0,2667 (y) ;这是imp门
...
MOV 0,2667 (y+1)
门消耗(减一操作)了:
MOV 0,2666 (y)
...
MOV 0,2667 (y+1)
执行到(y)进程, 它无法复制imp到进程(y+1),但没关系, 因为进程 (y+1) 执行前两
个螺旋留下的imp指令. 这样,螺旋就通过了门,继续前进并杀死敌进程.
HOW IT WORKS: Each spiral has its own binary launch. The first spiral
launches first and crawls forward an instruction by the time the other two
spirals have launched. Core then looks like this (after resetting the
counter for clearer exposition):
MOV 0,2667 ;This is label imp1 | MOV 0,2667 | MOV 0,2667
MOV 0,2667 (17) | MOV 0,2667 (18) | MOV 0,2667 (19)
MOV 0,2667 (20) | MOV 0,2667 (21) | MOV 0,2667 (22)
DAT #0,#0 (23) | (24) |
MOV 0,2668 (1) ;This is label imp2 | |
MOV 0,2668 | (2) |
MOV 0,2668 (9) ;This is label imp3 | | (3)
MOV 0,2668 | (10) |
(4) | | (11)
| (5) |
(12) | | (6)
| (13) |
(7) | | (14)
| (8) |
(15) | |
| (16) |
The imps then move forward via the usual instruction juggling.
When a gate crashing spiral overruns a gate, the second or third spirals
hit first:
MOV 0,2668 (x) ;imp gate here
The gate decrements:
MOV 0,2667 (x)
The wounded spiral copies this instruction 2667 ahead:
MOV 0,2667
(x+24)
...
MOV 0,2667
The second and third spirals now fall off the end and die, and then the
first spiral hits the gate:
MOV 0,2667 (y) ;imp gate here
...
MOV 0,2667 (y+1)
The gate decrements:
MOV 0,2666 (y)
...
MOV 0,2667 (y+1)
Process (y) executes, and can't copy the imp to process (y+1), but this is
okay, because process (y+1) executes the imp instruction from the two
spirals gone before. The spiral crawls through the gate and goes on to
kill the enemy processes.
--8--
名称: Nimbus Spiral光环螺旋
速度: c的50%(粗略线性)
长度: 1.992
耐久力: 非常强
威力: 好
得分:
step equ 127
imp MOV 0,step
launch SPL 1 ;1 process
SPL 1 ;2 processes
SPL 1 ;4 processes
SPL 1 ;8 processes
SPL 1 ;16 processes
MOV -1,0 ;32 processes
SPL 1 ;63 processes
SPL 2 ;126 processes
spread JMP @spread,imp
ADD #step,spread
end launch
Nimbus Spiral启动一个63点螺旋,每个点有两个进程.
因为二进制启动超过100条指令的限制, 所以Nimbus Spiral使用了称为光环类型
(Nimbus-type)的启动方式. 这种类型的启动代码明显小了, 但启动时间就大概是
两倍.
--8--
Name: Nimbus Spiral
Speed: 50% of c (somewhat linear)
Size: 1.992
Durability: Very Strong
Effectiveness: Fair
Score:
step equ 127
imp MOV 0,step
launch SPL 1 ;1 process
SPL 1 ;2 processes
SPL 1 ;4 processes
SPL 1 ;8 processes
SPL 1 ;16 processes
MOV -1,0 ;32 processes
SPL 1 ;63 processes
SPL 2 ;126 processes
spread JMP @spread,imp
ADD #step,spread
end launch
Nimbus Spiral launches a 63-point spiral with two processes per point.
Because a binary launch would exceed the 100-instruction limit, Nimbus
Spiral uses what is called a Nimbus-type launch. The code for this type
of launch is obviously smaller, but the time it takes to launch spirals is
roughly doubled.
工作原理: 每条SPL 1 命令使下一指令前后的进程数加倍. 执行MOV -1,0第一个进程
不分裂, 但所以后来的进程都执行一条SPL 1 命令. 因此,在SPL 2命令执行前, 磁芯
是这样的 (重置了计数器):
MOV 0,127
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0 (1)-(126)
JMP @0,-9
ADD #127,-1
执行SPL 2命令后:
MOV 0,127
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,-9 奇数进程
ADD #127,-1 偶数进程
我们再次重置进程. 现在执行 (1) , 跳转到JMP指令的B-操作数指定的
位置:
MOV 0,127 (253) ;这来自 (1)
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,-9 大于1的奇数进程
ADD #127,-1 偶数进程
现在执行 (2) , 加127到JMP指令的B-操作数:
MOV 0,127 (253)
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,118 大于1的奇数进程
ADD #127,-1 大于2的偶数进程
(254) ;这来自 (2)
现在继续. (3)跳转到新位置. 奇数进程修改跳转向量, 偶数进程跳转.
当(127)执行完了, 整个情况如下:
MOV 0,127 (253)
SPL 1,0 (379)
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,-134
ADD #127,-1
偶数进程
...
奇数进程散布于整个磁芯
奇数进程构成了imp螺旋,偶数进程则执行非法指令死掉, 只剩下螺旋在内存中蠕动.
HOW IT WORKS: Each SPL 1 command doubles the number of processes acting in
tandem at the next instruction. The first process that executes the
MOV -1,0 command does not split, but all subsequent processes execute a
SPL 1 command. Hence, before execution of the SPL 2 command, core looks
like this (with counter reset):
MOV 0,127
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0 (1)-(126)
JMP @0,-9
ADD #127,-1
After execution of the SPL 2 command:
MOV 0,127
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,-9 Odd processes
ADD #127,-1 Even processes
We reset the processes again. Process (1) now executes, jumping to the
location of the B-operand of the JMP instruction:
MOV 0,127 (253) ;this came from process (1)
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,-9 Odd processes greater than 1
ADD #127,-1 Even processes
Process (2) now executes, adding 127 to the B-operand of the JMP
instruction:
MOV 0,127 (253)
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,118 Odd processes greater than 1
ADD #127,-1 Even processes greater than 2
(254) ;this came from process (2)
And it continues. Process (3) jumps to a new location. The even processes
modify the jump vector, and the odd processes do all of the jumping. By
the time process (127) is ready to execute, we have the following
situation:
MOV 0,127 (253)
SPL 1,0 (379)
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 1,0
SPL 2,0
JMP @0,-134
ADD #127,-1
Even processes
...
Odd processes broadcast throughout core
The odd processes form an imp spiral and the even processes execute illegal
instructions and die, leaving just the spiral to crawl through memory.
--结论--
有两个问题要回答: 什么时候在你喜欢的战士里添加一个imp?和如何杀死imp?
现在大部分战士都对imp有一定的抵抗力, 因此纯imp程序很少是成功的. 但是很容易
在多进程的代码里加入imp,就像现在的石头(stones), 吸血鬼(vampires),或纸(paper).
多数成功的imp战士用它们大部分的进程时间来进行常规攻击, 并依赖imp环作为后援.加入imp
好不好,取决于你的程序; 你可能输得较少,但也可能赢得更少. 唯一可以确定的是你肯定会常
常打成平手. 这可以通过测试你的战士来改善.
--Conclusion--
Two questions beg to be answered: When should you add an imp to your
favorite warrior, and how do you kill imps?
Most of today's fighters have some resistance to imps, so pure imp programs
seldom are successful. But imps are easy to add to code that has multiple
processes running, like today's stones, vampires, or paper. The most
successful imp warriors use most of their process time in a more
conventional attack, and rely on the imp-ring as a backup. Whether an imp
is a good idea in your program depends on the program; you may lose less,
but you may win less. About the only thing you can be sure of is tying
more. But testing your warrior always helps.
杀死imp是困难的,但不是没有可能. Imp门对多数imp都有效, 但是应该在你的程序完成
自身构造后执行. 这样的Imp门
SPL 0,<gate
DAT <gate,<gate
有时甚至能杀死gate-crashing imps. 快速轰炸程序偶然能在启动程序完成前把它找到,
特别是fancier imps. 恰当的大面积轰炸程序(如 Charon v8.1) 可以击中并摧毁所有
的imp指令. 放置单个MOV 0,<1 炸弹到imp环的尾部(或尾部后不远的易受攻击指令) 可以
杀死整个环. 放置MOV <2667,<5334 指令到3点imp环可以杀死9条imp指令, 在stream(即
连续轰炸内存)中具有巨大威力. 有些程序为imp环专门制造了一个imp陷阱(imp trap),
它在以2667为步长的imp环中放置 SPL 0 炸弹,这样环就受到从尾部向前的攻击.
Killing imps is difficult, but not impossible. Imp gates work well against
most imps, but should only be executed after the rest of your code has done
its stuff. Imp gates of the form
SPL 0,<gate
DAT <gate,<gate
can sometimes kill even gate-crashing imps. Fast bombing programs can
occasionally catch the launching code before it has completed, especially
with fancier imps. Code with a long enough bombing run (e.g. Charon v8.1)
can hit and destroy all the imp instructions if it is done right. Dropping
a single MOV 0,<1 bomb on the tail (or vulnerable instruction soon after
the tail) of an imp-ring will kill the entire ring off. Dropping a
MOV <2667,<5334 instruction on a 3-point imp ring can kill as many as 9 imp
instructions, and is extremely effective in a stream (which is sequential
bombing of memory). Some programs use an imp trap tailor-made for stunning
imp-rings by dropping SPL 0 bombs on the imp-ring using a step size of
2667, so that the ring is attacked from the tail forward.
一种对imp启动程序的改进是添加消耗模式到所以SPL和JMP命令的B-字段. 例如你要启动
很大的二进制代码, 你可以自由的消耗63条指令来遍布磁芯. 这章参考的大部分原始代码
都是这种做法.
下面列出一些值得研究的imp风格程序. 除非特别指出, 都可以在88目录的warrior10.tar
找到. Imp和stone的结合程序会在第2章后面列出.
"The IMPire strikes back" 作者是 Anders Ivner (impire)
"Trident" 作者是 Anders Ivner (trident)
"Nimbus 1.2" 作者是 Alex MacAulay (nimbus12)
"Imps! Imps! Imps!" 作者是 Steven Morrell (contact morrell@math.utah.edu)
--
程序 2, Imp, A.K. Dewdney在Scientific American的文章中提出.
程序 3, Imp Gate,B.Thomsen提出它的通用形式,在文献中常被称为懦夫(wimp).
程序 5, Ring, 从_Push Off_中 P.Kline的一篇文章中偷来并修改而成,
看起来象是 A.Ivner的三角形"Trident."
程序 7, Gate Crashing Spiral, 从 P.Kilne的炮击"Cannonade"中偷来并修改而成
程序 8, Nimbus Spiral, 从 A.MacAulay的光环"Nimbus 1.2"中偷来并修改而成
【本章完】
An enhancement to the imp-launching routines is to add decrement statements
to all the b-fields of the SPL and JMP commands. If you have a large
binary launch, for example, you could decrement 63 instructions throughout
core for free. Most of the original code I have based this chapter on has
such b-fields.
Here is a list of imp-style programs worth investigating. Unless otherwise
noted, they can be found in warrior10.tar in the 88 directory. Imp-stone
combos will be listed in the back of chapter 2.
"The IMPire strikes back" by Anders Ivner (impire)
"Trident" by Anders Ivner (trident)
"Nimbus 1.2" by Alex MacAulay (nimbus12)
"Imps! Imps! Imps!" by Steven Morrell (contact morrell@math.utah.edu)
--
Program 2, Imp, was written by A.K. Dewdney for his Scientific American
articles.
Program 3, Imp Gate, was suggested in its current form by B.Thomsen, and
is often called a wimp in the literature.
Program 5, Ring, was stolen and modified from a _Push Off_ article from
P.Kline, but it looks suspiciously like A.Ivner's "Trident."
Program 7, Gate Crashing Spiral, was stolen and modified from P.Kilne's
"Cannonade."
Program 8, Nimbus Spiral, was stolen and modified from A.MacAulay's
"Nimbus 1.2."