{
贴图可以极大的节省CPU时间。呵呵,但是这一节费了我比较多的时间 : (
因为用到了opengl的辅助库,现在这个库的函数已经很少有人用了,但是我还是找到了,感谢zdcnow(磁效应),他给我提供的这个辅助库的delphi版本。在学习本节之前,请大家到网上下载glaux.dll、Glaux.pas文件,并加到项目中。
好了,让我们继续OPENGL之路.
首先我们需要加进SysUtils单元,因为我们这节要用到文件操作,我们还要将Glaux单元加进来。
然后我们在第一课的基础上加上几个变量,xrot , yrot 和 zrot 。这些变量用来使立方体绕X、Y、Z轴旋转。texture[] 为一个纹理分配存储空间。如果您需要不止一个的纹理,应该将数字1改成您所需要的数字。
}
VAR
h_RC : HGLRC; // Rendering Context(着色描述表)。
h_DC : HDC; // Device Context(设备描述表)
h_Wnd : HWND; // 窗口句柄
h_Instance : HINST; // 程序Instance(实例)。
keys : Array[0..255] Of Boolean; // 用于键盘例程的数组
xrot, // X 旋转量 ( 新增 )
yrot, // Y 旋转量 ( 新增 )
zrot : GLfloat; // Z 旋转量 ( 新增 )
Texture : Array[0..1] Of GLuint; // 存储一个纹理 ( 新增 )
{然后引载入opengl32.dll中的两个过程,我们要用到他们}
Procedure glGenTextures(n: GLsizei; Var textures: GLuint); stdcall; external
opengl32;
Procedure glBindTexture(target: GLenum; texture: GLuint); stdcall; external
opengl32;
{接下来我们需要增加一个新的函数,用来再入图像,该函数的返回类型在Glaux.pas中定义如下:
TAUX_RGBImageRec= record
sizeX, sizeY: GLint;
data: pointer;
end;
PTAUX_RGBImageRec= ^TAUX_RGBImageRec;
具体含义会在后面介绍}
Function LoadBmp(filename: pchar): PTAUX_RGBImageRec;
Var
BitmapFile : Thandle; // 文件句柄
Begin
//接下来检查文件名是否已提供
If Filename = '' Then // 确保文件名已提供。
result := Nil; // 如果没提供,返回 NULL
//接着检查文件是否存在。
BitmapFile := FileOpen(Filename, fmOpenWrite); //尝试打开文件
//如果我们能打开文件的话,很显然文件是存在的。
If BitmapFile > 0 Then // 文件存在么?
Begin
//关闭文件。
FileClose(BitmapFile); // 关闭句柄
//auxDIBImageLoad(Filename) 读取图象数据并将其返回。
result := auxDIBImageLoadA(filename); //载入位图并返回指针
End
Else
//如果我们不能打开文件,我们将返回NiL。
result := Nil; // 如果载入失败,返回NiL。
End;
//接下来在创建一个新函数,用来载入纹理贴图
Function LoadTexture: boolean;
//Status 的变量。我们使用它来跟踪是否能够载入位图以及能否创建纹理。
// Status 缺省设为 FALSE (表示没有载入或创建任何东东)。
//TextureImage变量PTAUX_RGBImageRec类型 存储位图的图像记录。
//次记录包含位图的宽度、高度和数据。
Var
Status : boolean;
TextureImage : Array[0..1] Of PTAUX_RGBImageRec;
Begin
Status := false;
ZeroMemory(@TextureImage, sizeof(TextureImage)); // 将指针设为 NULL
TextureImage[0] := LoadBMP('Texture.bmp');
If TextureImage[0] <> Nil Then
Begin
Status := TRUE; // 将 Status 设为 TRUE
//现在使用中 TextureImage[0] 的数据创建纹理。
//glGenTextures(1, texture[0]) 告诉OpenGL我们想生成一个纹理名字
//(如果您想载入多个纹理,加大数字)。
//glBindTexture(GL_TEXTURE_2D, texture[0]) 告诉OpenGL将纹理名字 texture[0] 绑定到纹理目标上。
//2D纹理只有高度(在 Y 轴上)和宽度(在 X 轴上)。
//主函数将纹理名字指派给纹理数据。
//本例中我们告知OpenGL, &texture[0] 处的内存已经可用。
//我们创建的纹理将存储在 &texture[0] 的 指向的内存区域。
glGenTextures(1, texture[0]); // 创建纹理
glBindTexture(GL_TEXTURE_2D, texture[0]); // 使用来自位图数据生成 的典型纹理
//下来我们创建真正的纹理。
//下面一行告诉OpenGL此纹理是一个2D纹理 ( GL_TEXTURE_2D )。
//数字零代表图像的详细程度,通常就由它为零去了。
//数字三是数据的成分数。因为图像是由红色数据,绿色数据,蓝色数据三种组分组成。
//TextureImage[0].sizeX 是纹理的宽度。
//如果您知道宽度,您可以在这里填入,但计算机可以很容易的为您指出此值。
// TextureImage[0].sizey 是纹理的高度。
//数字零是边框的值,一般就是零。
// GL_RGB 告诉OpenGL图像数据由红、绿、蓝三色数据组成。
//GL_UNSIGNED_BYTE 意味着组成图像的数据是无符号字节类型的。
//最后... TextureImage[0].data 告诉OpenGL纹理数据的来源。
//此例中指向存放在 TextureImage[0] 记录中的数据。
// 生成纹理
glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[0].sizeX,
TextureImage[0].sizeY, 0, GL_RGB, GL_UNSIGNED_BYTE,
TextureImage[0].data);
//下面的两行告诉OpenGL在显示图像时,
//当它比放大得原始的纹理大(GL_TEXTURE_MAG_FILTER)
//或缩小得比原始得纹理小(GL_TEXTURE_MIN_FILTER)时OpenGL采用的滤波方式。
//通常这两种情况下我都采用 GL_LINEAR。这使得纹理从很远处到离屏幕很近时都平滑显示。
//使用 GL_LINEAR需要CPU和显卡做更多的运算。
//如果您的机器很慢,您也许应该采用 GL_NEAREST 。
//过滤的纹理在放大的时候,看起来斑驳的很(马赛克啦)。
//您也可以结合这两种滤波方式。在近处时使用 GL_LINEAR ,远处时 GL_NEAREST 。
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // 线形滤波
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // 线形滤波
End;
//现在我们释放前面用来存放位图数据的内存。
//我们先查看位图数据是否存放在处。
//如果是的话,再查看数据是否已经存储。
//如果已经存储的话,删了它。
//接着再释放 TextureImage[0] 图像结构以保证所有的内存都能释放。
If assigned(TextureImage[0]) Then // 纹理是否存在
If assigned(TextureImage[0].data) Then // 纹理图像是否存在
TextureImage[0].data := Nil; // 释放纹理图像占用的内存
TextureImage[0] := Nil; // 释放图像结构
// 最后返回状态变量。如果一切OK,变量 Status 的值为 TRUE 。否则为 FALSE
result := Status; // 返回 Status
End;
//然后在 glInit 中增加很少的几行代码
Procedure glInit();
Begin
If (Not LoadTexture) Then // 调用纹理载入子例程( 新增 )
exit; // 如果未能载入,退出( 新增 )
glEnable(GL_TEXTURE_2D); // 启用纹理映射( 新增 )
glClearColor(0.0, 0.0, 0.0, 0.0); // 黑色背景
glShadeModel(GL_SMOOTH); // 启用阴影平滑
glClearDepth(1.0); // 设置深度缓存
glEnable(GL_DEPTH_TEST); // 启用深度测试
glDepthFunc(GL_LESS); // 所作深度测试的类型
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // 真正精细的透视修正
End;
{现在我们绘制贴图过的立方体。这段代码被狂注释了一把,应该很好懂。开始两行代码 glClear() 和 glLoadIdentity() 是第一课中就有的代码。 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) 清除屏幕并设为我们在 InitGL() 中选定的颜色,本例中是黑色。深度缓存也被清除。模型观察矩阵也使用glLoadIdentity()重置。}
Procedure glDraw();
Begin
glClear(GL_COLOR_BUFFER_BIT Or GL_DEPTH_BUFFER_BIT); // 清除屏幕和深度缓存
glLoadIdentity(); // 重置当前的模型观察矩阵
glTranslatef(0.0, 0.0, -6.0); // 移入屏幕6个单位
//下面三行使立方体绕X、Y、Z轴旋转。
//旋转多少依赖于变量 xrot , yrot 和 zrot 的值。
glRotatef(xrot, 1.0, 0.0, 0.0); // 绕X轴旋转
glRotatef(yrot, 0.0, 1.0, 0.0); // 绕Y轴旋转
glRotatef(zrot, 0.0, 0.0, 1.0); // 绕Z轴旋转
//下一行代码选择我们使用的纹理。
//如果在场景中使用多个纹理,应该使用
//glBindTexture(GL_TEXTURE_2D, texture[ 所使用纹理对应的数字 ]) 来选择要绑定的纹理。
//当想改变纹理时,应该绑定新的纹理。
//有一点值得指出的是,
//不能在 glBegin() 和 glEnd() 之间绑定纹理,
//必须在 glBegin() 之前或 glEnd() 之后绑定。
//注意我们在后面是如何使用 glBindTexture 来指定和绑定纹理的。
glBindTexture(GL_TEXTURE_2D, texture[0]); // 选择纹理
//为了将纹理正确的映射到四边形上,
//必须将纹理的右上角映射到四边形的右上角,
//纹理的左上角映射到四边形的左上角,
//纹理的右下角映射到四边形的右下角,
//纹理的左下角映射到四边形的左下角。
//如果映射错误的话,图像显示时可能上下颠倒,侧向一边或者什么都不是。
//glTexCoord2f 的第一个参数是X坐标。
// 0.0是纹理的左侧。 0.5是纹理的中点, 1.0是纹理的右侧。
//glTexCoord2f 的第二个参数是Y坐标。
//0.0是纹理的底部。 0.5是纹理的中点, 1.0是纹理的顶部。
//所以纹理的左上坐标是 X:0.0f,Y:1.0f ,
//四边形的左上顶点是 X: -1.0f,Y:1.0f 。
//其余三点依此类推。
//试着玩玩 glTexCoord2f 的X,Y坐标参数。
//把1.0改为0.5将只显示纹理的左半部分,
//把0.0改为0.5将只显示纹理的右半部分。
glBegin(GL_QUADS);
// 前面
glTexCoord2f(0.0, 0.0);
glVertex3f(-1.0, -1.0, 1.0); // 纹理和四边形的左下
glTexCoord2f(1.0, 0.0);
glVertex3f(1.0, -1.0, 1.0); // 纹理和四边形的右下
glTexCoord2f(1.0, 1.0);
glVertex3f(1.0, 1.0, 1.0); // 纹理和四边形的右上
glTexCoord2f(0.0, 1.0);
glVertex3f(-1.0, 1.0, 1.0); // 纹理和四边形的左上
// 后面
glTexCoord2f(1.0, 0.0);
glVertex3f(-1.0, -1.0, -1.0); // 纹理和四边形的右下
glTexCoord2f(1.0, 1.0);
glVertex3f(-1.0, 1.0, -1.0); // 纹理和四边形的右上
glTexCoord2f(0.0, 1.0);
glVertex3f(1.0, 1.0, -1.0); // 纹理和四边形的左上
glTexCoord2f(0.0, 0.0);
glVertex3f(1.0, -1.0, -1.0); // 纹理和四边形的左下
// 顶面
glTexCoord2f(0.0, 1.0);
glVertex3f(-1.0, 1.0, -1.0); // 纹理和四边形的左上
glTexCoord2f(0.0, 0.0);
glVertex3f(-1.0, 1.0, 1.0); // 纹理和四边形的左下
glTexCoord2f(1.0, 0.0);
glVertex3f(1.0, 1.0, 1.0); // 纹理和四边形的右下
glTexCoord2f(1.0, 1.0);
glVertex3f(1.0, 1.0, -1.0); // 纹理和四边形的右上
// 底面
glTexCoord2f(1.0, 1.0);
glVertex3f(-1.0, -1.0, -1.0); // 纹理和四边形的右上
glTexCoord2f(0.0, 1.0);
glVertex3f(1.0, -1.0, -1.0); // 纹理和四边形的左上
glTexCoord2f(0.0, 0.0);
glVertex3f(1.0, -1.0, 1.0); // 纹理和四边形的左下
glTexCoord2f(1.0, 0.0);
glVertex3f(-1.0, -1.0, 1.0); // 纹理和四边形的右下
// 右面
glTexCoord2f(1.0, 0.0);
glVertex3f(1.0, -1.0, -1.0); // 纹理和四边形的右下
glTexCoord2f(1.0, 1.0);
glVertex3f(1.0, 1.0, -1.0); // 纹理和四边形的右上
glTexCoord2f(0.0, 1.0);
glVertex3f(1.0, 1.0, 1.0); // 纹理和四边形的左上
glTexCoord2f(0.0, 0.0);
glVertex3f(1.0, -1.0, 1.0); // 纹理和四边形的左下
// 左面
glTexCoord2f(0.0, 0.0);
glVertex3f(-1.0, -1.0, -1.0); // 纹理和四边形的左下
glTexCoord2f(1.0, 0.0);
glVertex3f(-1.0, -1.0, 1.0); // 纹理和四边形的右下
glTexCoord2f(1.0, 1.0);
glVertex3f(-1.0, 1.0, 1.0); // 纹理和四边形的右上
glTexCoord2f(0.0, 1.0);
glVertex3f(-1.0, 1.0, -1.0); // 纹理和四边形的左上
glEnd();
xrot := xrot + 0.3; // X 轴旋转
yrot := yrot + 0.2; // Y 轴旋转
zrot := zrot + 0.4; // Z 轴旋转
End;
{最后,关于用作纹理的图像我想有几点十分重要,并且您必须明白。此图像的宽和高必须是2的n次方;宽度和高度最小必须是64象素;并且出于兼容性的原因,图像的宽度和高度不应超过256象素。如果您的原始素材的宽度和高度不是64,128,256象素的话,使用图像处理软件重新改变图像的大小。可以肯定有办法能绕过这些限制,但现在我们只需要用标准的纹理尺寸。}
//OK!运行一下看看效果