【3】交换排序
基本思想是:两两比较待排序记录的关键码,如果发生逆序,则交换之,直到所有对象都排好为止。
起泡排序
起泡排序是比较相邻的两个记录,逆序则交换。这样的做法导致小的关键码一层层的浮上来,因此得名。CSDN的论坛曾经讨论过“冒泡”和“起泡”是不是一个东西,看来这是翻译惹的祸,英文名都是Bubble Sort,具体写的时候可以正着排,也可以倒着排。(严版是从后往前排,殷版是从前往后排,好在两本书都翻译为“起泡排序”,不然就正像某些人得出的结论——一个是从后往前排,一个是从前往后排)
template <class T>
void BubbleSort(T a[], int N, int& KCN, int& RMN)
{
KCN = 0; RMN = 0; bool exchange = true;
for (int i = 1; i < N && exchange; i++)
for (int j = N - 1; j >= i; j--)
{
exchange = false;
if (++KCN && a[j - 1] > a[j]) { swap(a[j - 1], a[j]); exchange = true; RMN += 3; }
}
}
需要注意的是,不要写成下面这个样子,虽然结果是对的:
template <class T>
void BubbleSort2(T a[], int N)
{
for (int i = 0; i < N; i++)
for (int j = 1; j < N - i; j++)
if (a[j - 1] > a[j]) swap(a[j - 1], a[j]);
}
测试结果:
Sort ascending N=10000 TimeSpared: 0ms
KCN=9999 KCN/N=0.9999 KCN/N^2=9.999e-005 KCN/NlogN=0.07525
RMN=0 RMN/N=0 RMN/N^2=0 RMN/NlogN=0
Sort randomness N=10000 TimeSpared: 1161ms
KCN=45409094 KCN/N=4540.91 KCN/N^2=0.454091 KCN/NlogN=341.737
RMN=71526984 RMN/N=7152.7 RMN/N^2=0.71527 RMN/NlogN=538.294
Sort descending N=10000 TimeSpared: 1022ms
KCN=49995000 KCN/N=4999.5 KCN/N^2=0.49995 KCN/NlogN=376.25
RMN=149985000 RMN/N=14998.5 RMN/N^2=1.49985 RMN/NlogN=1128.75
可以看出,效率非常的差,还不如直插排序,真不知道为什么人们对此津津乐道,难道是为了理解快速排序?另外还有一个有趣的现象,虽然逆序的KCN和RMN都比乱序的多,但是逆序花的时间却比乱序少,从这里可以看到CPU流水线的作用,这里可以给我们一个信号,一个真正好的算法需要充分利用硬件的特性。增多记录数目(N=1000000)时,可以看出,在完全有序的情况下,起泡比直插要好一些,因为此时不需要移动记录。
快速排序
真为这个算法感到悲哀,连一个能表明算法实质的名字(比如直插、表插)都没有,也不像希尔排序是以发明人的名字命名的,难道就是因为它太快了?也许“快速”是对一个排序算法最高的荣誉吧。
基本思想是:任取待排序列的某个记录作为基准,按照该关键码大小,将整个序列分成两个序列——左侧的所有记录的关键码都比基准小(或者等),右侧的都比基准大,基准则放在两个子序列之间,显然这时基准放在了最后应该放置的位置。分别对左右子序列重复上面的过程,直到最后所有的记录都放在相应的位置。
下面的例程不容易看懂,因为这是几次改进之后的样子:
template <class T>
int Partition(T a[], int left, int right, int& KCN, int& RMN)
{
int pivotpos = left; T pivot = a[left];//枢轴
for (int i = left + 1; i <= right; i++)
if (++KCN && a[i] < pivot && ++pivotpos != i)
{ swap(a[i], a[pivotpos]); RMN += 3;}
swap(a[left], a[pivotpos]); RMN += 3;
return pivotpos;
}
将计算枢轴位置单独作为一个函数,可以避免递归的时候保存无用的临时变量。当你决定使用递归的时候,都要注意这点——将一切可以放在递归外面的都放在外面。注意这个函数是怎样达到我们“枢轴左边都比它小,右边都比它大”的目的的。
template <class T>
void QSRecurve(T a[], int left, int right, int& KCN, int& RMN)
{
if (left < right)
{
int pivotpos = Partition<T>(a, left, right, KCN, RMN);
QSRecurve<T>(a, left, pivotpos - 1, KCN, RMN);
QSRecurve<T>(a, pivotpos + 1, right, KCN, RMN);
}
}
template <class T>
void QuickSort(T a[], int N, int& KCN, int& RMN)
{
KCN = 0; RMN = 0;
QSRecurve<T>(a, 0, N - 1, KCN, RMN);
}
这两个只能算个外壳了,尤其是最后一个。
测试结果:
Sort ascending N=10000 TimeSpared: 1051ms
KCN=49995000 KCN/N=4999.5 KCN/N^2=0.49995 KCN/NlogN=376.25
RMN=29997 RMN/N=2.9997 RMN/N^2=0.00029997 RMN/NlogN=0.22575
Sort randomness N=10000 TimeSpared: 0ms
KCN=155655 KCN/N=15.5655 KCN/N^2=0.00155655 KCN/NlogN=1.17142
RMN=211851 RMN/N=21.1851 RMN/N^2=0.00211851 RMN/NlogN=1.59434
Sort descending N=10000 TimeSpared: 1082ms
KCN=49995000 KCN/N=4999.5 KCN/N^2=0.49995 KCN/NlogN=376.25
RMN=29997 RMN/N=2.9997 RMN/N^2=0.00029997 RMN/NlogN=0.22575
可以看到,平均性能非常好,但是在两端的性能还不如直插。测试N=100000的情况如下(千万记住把正序和逆序的测试注释掉,否则,到时候“死机”不要找我)
Sort randomness N=100000 TimeSpared: 110ms
KCN=2123221 KCN/N=21.2322 KCN/N^2=0.000212322KCN/NlogN=1.27831
RMN=3010848 RMN/N=30.1085 RMN/N^2=0.000301085RMN/NlogN=1.81271
确实非常的“快速”,但是它的最坏情况实在让人不能放心,万一……,并且由于使用堆栈递归,出了最坏情况没准程序就崩溃了。为了减低这种不良倾向,改进办法是“三者取中”,即选取待排序序列的第一个、最后一个、中间一个的关键码居中的那个作为基准。只要改一下Partition函数就可以了。
template <class T>
int Partition(T a[], int left, int right, int& KCN, int& RMN)
{
int mid = (left + right) / 2;
if (++KCN && a[left] > a[mid])
{
if (++KCN && a[left] > a[right])
{
if (++KCN && a[mid] > a[right]) { swap(a[mid], a[left]); RMN += 3; }
else { swap(a[right], a[left]); RMN += 3; }
}
}
else
{
if (++KCN && a[left] < a[right])
{
if (++KCN && a[mid] < a[right]) { swap(a[mid], a[left]); RMN += 3; }
else { swap(a[right], a[left]); RMN += 3; }
}
}
int pivotpos = left; T pivot = a[left];//枢轴
for (int i = left + 1; i <= right; i++)
if (++KCN && a[i] < pivot && ++pivotpos != i) { swap(a[i], a[pivotpos]); RMN += 3;}
swap(a[left], a[pivotpos]); RMN += 3;
return pivotpos;
}
只是在原有的Partition函数上添加了粗体部分。下面是测试结果:
Sort ascending N=10000 TimeSpared: 0ms
KCN=131343 KCN/N=13.1343 KCN/N^2=0.00131343 KCN/NlogN=0.988455
RMN=35424 RMN/N=3.5424 RMN/N^2=0.00035424 RMN/NlogN=0.266592
Sort randomness N=10000 TimeSpared: 0ms
KCN=154680 KCN/N=15.468 KCN/N^2=0.0015468 KCN/NlogN=1.16408
RMN=204093 RMN/N=20.4093 RMN/N^2=0.00204093 RMN/NlogN=1.53595
Sort descending N=10000 TimeSpared: 280ms
KCN=12517506 KCN/N=1251.75 KCN/N^2=0.125175 KCN/NlogN=94.2036
RMN=45006 RMN/N=4.5006 RMN/N^2=0.00045006 RMN/NlogN=0.338704
下面是N=100000的测试结果,在逆序的时候还是很尴尬,不过还算说得过去。
Sort ascending N=100000 TimeSpared: 60ms
KCN=1665551 KCN/N=16.6555 KCN/N^2=0.000166555KCN/NlogN=1.00276
RMN=393210 RMN/N=3.9321 RMN/N^2=3.9321e-005RMN/NlogN=0.236736
Sort randomness N=100000 TimeSpared: 110ms
KCN=1888590 KCN/N=18.8859 KCN/N^2=0.000188859KCN/NlogN=1.13704
RMN=2659857 RMN/N=26.5986 RMN/N^2=0.000265986RMN/NlogN=1.60139
Sort descending N=100000 TimeSpared: 42120ms
KCN=1250175006 KCN/N=12501.8 KCN/N^2=0.125018 KCN/NlogN=752.68
RMN=450006 RMN/N=4.50006 RMN/N^2=4.50006e-005RMN/NlogN=0.270931
然而实际上,我们花那么多语句搞一个“三者取中”还不如直接“随便选一个”来得高效,例如将下面的语句替换掉原来的粗体语句:
swap(a[left], a[rnd(right-left)+left]); RMN += 3;
测试结果:
Sort ascending N=100000 TimeSpared: 90ms
KCN=1917756 KCN/N=19.1776 KCN/N^2=0.000191776KCN/NlogN=1.1546
RMN=378810 RMN/N=3.7881 RMN/N^2=3.7881e-005RMN/NlogN=0.228066
Sort randomness N=100000 TimeSpared: 120ms
KCN=1979189 KCN/N=19.7919 KCN/N^2=0.000197919KCN/NlogN=1.19159
RMN=3175977 RMN/N=31.7598 RMN/N^2=0.000317598RMN/NlogN=1.91213
Sort descending N=100000 TimeSpared: 110ms
KCN=2069369 KCN/N=20.6937 KCN/N^2=0.000206937KCN/NlogN=1.24588
RMN=2574174 RMN/N=25.7417 RMN/N^2=0.000257417RMN/NlogN=1.54981
可以看到逆序的效率有了质的飞跃,随机函数得自己写,因为库函数的rand()最大只能输出0x7fff,这是因为rand函数使用的是32bit的整数,为了不溢出(最严重的是出负数),只能输出那么大。一个不太严格的随机函数如下,最大输出值是32bit的最大正整数:
int rnd(int n)
{
static _int64 x;
x = (2053 * x + 13849) % 0x7fffffff;
return (int)x % n;
}
【附注】注意到随机函数的最大输出值问题,源自我在做一千万整数排序测试的时候,发现对于乱序,快排的性能变得很差。感谢BlueSky2008给出了解答,这是相关的帖子http://expert.csdn.net/Expert/topic/2237/2237721.xml?temp=.9800684。