// 改写了dx9 SDK中的tutorial 2 的文件使得可以采用fixed functional VS/Assemble VS/HLSI VS来渲染一个Triangle.
-----------------------------------------------------------------------------
// File: Matrices.cpp
//
// Desc: Now that we know how to create a device and render some 2D vertices,
// this tutorial goes the next step and renders 3D geometry. To deal with
// 3D geometry we need to introduce the use of 4x4 matrices to transform
// the geometry with translations, rotations, scaling, and setting up our
// camera.
//
// Geometry is defined in model space. We can move it (translation),
// rotate it (rotation), or stretch it (scaling) using a world transform.
// The geometry is then said to be in world space. Next, we need to
// position the camera, or eye point, somewhere to look at the geometry.
// Another transform, via the view matrix, is used, to position and
// rotate our view. With the geometry then in view space, our last
// transform is the projection transform, which "projects" the 3D scene
// into our 2D viewport.
//
// Note that in this tutorial, we are introducing the use of D3DX, which
// is a set of helper utilities for D3D. In this case, we are using some
// of D3DX's useful matrix initialization functions. To use D3DX, simply
// include <d3dx9.h> and link with d3dx9.lib.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
// 修改者: Nigo.zhou <zzh1234567@163.com>
// 目的: 原有的固定流水线程序扩展成可以使用
// 1 固定功能流水线进行顶点处理 或者使用
// 2 汇编级的可编程流水线进行顶点处理 或者使用
// 3 HLSI的可编程流水线进行顶点处理
//-----------------------------------------------------------------------------
#include <Windows.h>
#include <mmsystem.h>
#include <d3dx9.h>
#define VS_TYPE 2 // 0; for fixed VS; 1: for Assemble VS; 2: for HLSL
#define SAFE_RELEASE(x) {if(x) x->Release();};
//-----------------------------------------------------------------------------
// Global variables
//-----------------------------------------------------------------------------
LPDIRECT3D9 g_pD3D = NULL; // Used to create the D3DDevice
LPDIRECT3DDEVICE9 g_pd3dDevice = NULL; // Our rendering device
LPDIRECT3DVERTEXBUFFER9 g_pVB = NULL; // Buffer to hold vertices
// A structure for our custom vertex type
struct CUSTOMVERTEX
{
FLOAT x, y, z; // The untransformed, 3D position for the vertex
DWORD color; // The vertex color
};
// 我使用dx9引入的vertex declartiaon代替FVF
LPDIRECT3DVERTEXDECLARATION9 g_pVertexDeclaration;
// Our custom FVF, which describes our custom vertex structure
//#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_DIFFUSE)
// vertex declaration
D3DVERTEXELEMENT9 decl[] =
{
//for Position
{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,D3DDECLUSAGE_POSITION, 0 },
// for color
{ 0, 12, D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,D3DDECLUSAGE_COLOR, 0 },
D3DDECL_END()
};
#if VS_TYPE == 1
// shader declaration
const char* strVertexShader =
"vs_3_0 // version instruction\n"
// input register declaration
"dcl_position v0 // define position data in register v0\n"
"dcl_color v1 // define color\n"
// output register declaration
"dcl_position0 o7 // \n"
"dcl_color o3 // output color\n"
// ALU(Shader function/function declaration)
"m4x4 o7, v0, c0 // transform vertices by world/view/projection matrix\n"
"mov o3, v1 //\n"
";//\n"
"";
LPDIRECT3DVERTEXSHADER9 g_pVS = NULL;
#endif
#if VS_TYPE == 2
const char* strVertexShader = // vertex shader declaration
"float4x4 WorldViewProj : WORLDVIEWPROJ;\n"
"struct VS_OUTPUT\n"
"{\n"
"float4 Pos : POSITION;\n"
"float4 Diff : COLOR0;\n"
"};\n"
"\n"
"VS_OUTPUT VS_Matrices(float4 inPos : POSITION,float4 inDiff : COLOR0)\n"
"{\n"
"VS_OUTPUT Out = (VS_OUTPUT)0;\n"
"\n"
" Out.Pos = mul(inPos, WorldViewProj);\n"
" Out.Diff = inDiff;\n"
" return Out;\n"
"}\n"
"";
LPDIRECT3DVERTEXSHADER9 g_pVS = NULL;
#endif
//-----------------------------------------------------------------------------
// Name: InitD3D()
// Desc: Initializes Direct3D
//-----------------------------------------------------------------------------
HRESULT InitD3D( HWND hWnd )
{
// Create the D3D object.
if( NULL == ( g_pD3D = Direct3DCreate9( D3D_SDK_VERSION ) ) )
return E_FAIL;
// Set up the structure used to create the D3DDevice
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory( &d3dpp, sizeof(d3dpp) );
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;
// Create the D3DDevice
if( FAILED( g_pD3D->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &g_pd3dDevice ) ) )
{
return E_FAIL;
}
// Turn off culling, so we see the front and back of the triangle
g_pd3dDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE );
// Turn off D3D lighting, since we are providing our own vertex colors
g_pd3dDevice->SetRenderState( D3DRS_LIGHTING, FALSE );
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: SetupMatrices()
// Desc: Sets up the world, view, and projection transform matrices.
//-----------------------------------------------------------------------------
VOID SetupMatrices()
{
// For our world matrix, we will just rotate the object about the y-axis.
D3DXMATRIXA16 matWorld;
// Set up the rotation matrix to generate 1 full rotation (2*PI radians)
// every 1000 ms. To avoid the loss of precision inherent in very high
// floating point numbers, the system time is modulated by the rotation
// period before conversion to a radian angle.
UINT iTime = timeGetTime() % 1000;
FLOAT fAngle = iTime * (2.0f * D3DX_PI) / 1000.0f;
D3DXMatrixRotationY( &matWorld, fAngle );
// Set up our view matrix. A view matrix can be defined given an eye point,
// a point to lookat, and a direction for which way is up. Here, we set the
// eye five units back along the z-axis and up three units, look at the
// origin, and define "up" to be in the y-direction.
D3DXVECTOR3 vEyePt( 0.0f, 3.0f,-5.0f );
D3DXVECTOR3 vLookatPt( 0.0f, 0.0f, 0.0f );
D3DXVECTOR3 vUpVec( 0.0f, 1.0f, 0.0f );
D3DXMATRIXA16 matView;
D3DXMatrixLookAtLH( &matView, &vEyePt, &vLookatPt, &vUpVec );
// For the projection matrix, we set up a perspective transform (which
// transforms geometry from 3D view space to 2D viewport space, with
// a perspective divide making objects smaller in the distance). To build
// a perpsective transform, we need the field of view (1/4 pi is common),
// the aspect ratio, and the near and far clipping planes (which define at
// what distances geometry should be no longer be rendered).
D3DXMATRIXA16 matProj;
D3DXMatrixPerspectiveFovLH( &matProj, D3DX_PI/4, 1.0f, 1.0f, 100.0f );
#if VS_TYPE == 0
g_pd3dDevice->SetTransform( D3DTS_WORLD, &matWorld );
g_pd3dDevice->SetTransform( D3DTS_VIEW, &matView );
g_pd3dDevice->SetTransform( D3DTS_PROJECTION, &matProj );
#else
D3DXMATRIXA16 compMat;
D3DXMatrixMultiply(&compMat, &matWorld, &matView);
D3DXMatrixMultiply(&compMat, &compMat, &matProj);
D3DXMatrixTranspose( &compMat, &compMat );
g_pd3dDevice->SetVertexShaderConstantF( 0, (float*)&compMat, 4 );
#endif
}
//-----------------------------------------------------------------------------
// Name: InitGeometry()
// Desc: Creates the scene geometry
//-----------------------------------------------------------------------------
HRESULT InitGeometry()
{
HRESULT hr;
// Initialize three vertices for rendering a triangle
CUSTOMVERTEX g_Vertices[] =
{
{ -1.0f,-1.0f, 0.0f, 0xffff0000, },
{ 1.0f,-1.0f, 0.0f, 0xff0000ff, },
{ 0.0f, 1.0f, 0.0f, 0xffffffff, },
};
// Create the vertex buffer.
// 我们使用vertex declartion
//if( FAILED( g_pd3dDevice->CreateVertexBuffer( 3*sizeof(CUSTOMVERTEX),
// 0, D3DFVF_CUSTOMVERTEX,
// D3DPOOL_DEFAULT, &g_pVB, NULL ) ) )
if( FAILED( g_pd3dDevice->CreateVertexBuffer( 3*sizeof(CUSTOMVERTEX),
0, 0,
D3DPOOL_DEFAULT, &g_pVB, NULL ) ) )
{
return E_FAIL;
}
// Fill the vertex buffer.
VOID* pVertices;
if( FAILED( g_pVB->Lock( 0, sizeof(g_Vertices), (void**)&pVertices, 0 ) ) )
return E_FAIL;
memcpy( pVertices, g_Vertices, sizeof(g_Vertices) );
g_pVB->Unlock();
if( FAILED( hr = g_pd3dDevice->CreateVertexDeclaration( decl,
&g_pVertexDeclaration ) ) )
{
SAFE_RELEASE(g_pVertexDeclaration);
return hr;
}
#if VS_TYPE == 1
// Compile and create the vertex shader
LPD3DXBUFFER pShader = NULL;
hr = D3DXAssembleShader(
strVertexShader,
(UINT)strlen(strVertexShader),
NULL,
NULL,
D3DXSHADER_DEBUG,
&pShader,
NULL // error messages
);
if( FAILED(hr) )
{
SAFE_RELEASE(pShader);
return hr;
}
// Create the vertex shader
hr = g_pd3dDevice->CreateVertexShader(
(DWORD*)pShader->GetBufferPointer(), &g_pVS );
if( FAILED(hr) )
{
SAFE_RELEASE(pShader);
SAFE_RELEASE(g_pVS);
return hr;
}
SAFE_RELEASE(pShader);
#endif
#if VS_TYPE == 2
// Compile and create the vertex shader
LPD3DXBUFFER pShader = NULL;
hr = D3DXCompileShader(
strVertexShader,
(UINT)strlen(strVertexShader),
NULL,
NULL,
"VS_Matrices",
"vs_2_0",
D3DXSHADER_DEBUG,
&pShader,
NULL, // error messages
NULL
);
if( FAILED(hr) )
{
SAFE_RELEASE(pShader);
return hr;
}
// Create the vertex shader
hr = g_pd3dDevice->CreateVertexShader(
(DWORD*)pShader->GetBufferPointer(), &g_pVS );
if( FAILED(hr) )
{
SAFE_RELEASE(pShader);
SAFE_RELEASE(g_pVS);
return hr;
}
SAFE_RELEASE(pShader);
#endif
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: Render()
// Desc: Draws the scene
//-----------------------------------------------------------------------------
VOID Render()
{
// Clear the backbuffer to a black color
g_pd3dDevice->Clear( 0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,0), 1.0f, 0 );
// Begin the scene
if( SUCCEEDED( g_pd3dDevice->BeginScene() ) )
{
// Setup the world, view, and projection matrices
SetupMatrices();
// Render the vertex buffer contents
g_pd3dDevice->SetStreamSource( 0, g_pVB, 0, sizeof(CUSTOMVERTEX) );
// 我们使用vertex declaration
g_pd3dDevice->SetVertexDeclaration( g_pVertexDeclaration);
#if VS_TYPE != 0
g_pd3dDevice->SetVertexShader(g_pVS);
#endif
//g_pd3dDevice->SetFVF( D3DFVF_CUSTOMVERTEX );
g_pd3dDevice->DrawPrimitive( D3DPT_TRIANGLESTRIP, 0, 1 );
#if VS_TYPE != 0
g_pd3dDevice->SetVertexShader(NULL);
#endif
// End the scene
g_pd3dDevice->EndScene();
}
// Present the backbuffer contents to the display
g_pd3dDevice->Present( NULL, NULL, NULL, NULL );
}
//-----------------------------------------------------------------------------
// Name: Cleanup()
// Desc: Releases all previously initialized objects
//-----------------------------------------------------------------------------
VOID Cleanup()
{
SAFE_RELEASE(g_pVertexDeclaration);
SAFE_RELEASE(g_pVS);
if( g_pVB != NULL )
g_pVB->Release();
if( g_pd3dDevice != NULL )
g_pd3dDevice->Release();
if( g_pD3D != NULL )
g_pD3D->Release();
}
//-----------------------------------------------------------------------------
// Name: MsgProc()
// Desc: The window's message handler
//-----------------------------------------------------------------------------
LRESULT WINAPI MsgProc( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam )
{
switch( msg )
{
case WM_DESTROY:
Cleanup();
PostQuitMessage( 0 );
return 0;
}
return DefWindowProc( hWnd, msg, wParam, lParam );
}
//-----------------------------------------------------------------------------
// Name: WinMain()
// Desc: The application's entry point
//-----------------------------------------------------------------------------
INT WINAPI WinMain( HINSTANCE hInst, HINSTANCE, LPSTR, INT )
{
// Register the window class
WNDCLASSEX wc = { sizeof(WNDCLASSEX), CS_CLASSDC, MsgProc, 0L, 0L,
GetModuleHandle(NULL), NULL, NULL, NULL, NULL,
"D3D Tutorial", NULL };
RegisterClassEx( &wc );
// Create the application's window
HWND hWnd = CreateWindow( "D3D Tutorial", "D3D Tutorial 03: Matrices",
WS_OVERLAPPEDWINDOW, 100, 100, 256, 256,
GetDesktopWindow(), NULL, wc.hInstance, NULL );
// Initialize Direct3D
if( SUCCEEDED( InitD3D( hWnd ) ) )
{
// Create the scene geometry
if( SUCCEEDED( InitGeometry() ) )
{
// Show the window
ShowWindow( hWnd, SW_SHOWDEFAULT );
UpdateWindow( hWnd );
// Enter the message loop
MSG msg;
ZeroMemory( &msg, sizeof(msg) );
while( msg.message!=WM_QUIT )
{
if( PeekMessage( &msg, NULL, 0U, 0U, PM_REMOVE ) )
{
TranslateMessage( &msg );
DispatchMessage( &msg );
}
else
Render();
}
}
}
UnregisterClass( "D3D Tutorial", wc.hInstance );
return 0;
}