1、数据存储的方式?
数据仓库的数据由两种存储方式:一种是存储在关系数据库中,另一种是按多维的方式存储,也就是多维数组。
2、存储何种数据?
数据仓库中存在不同的综合级别的数据。一般把数据分成四个级别,早期细节级数据,当前细节级数据,轻度综合级,高度综合级。不同的综合级别一般称为粒度。粒度越大,表示细节程度越低,综合程度越高。级别的划分是根据粒度进行的。
数据仓库中还有一种是元数据,也就是关于数据的数据。传统数据库中的数据字典或者系统目录都是元数据,在数据仓库中 元数据表现为两种形式:一种是为了从操作型环境向数据仓库环境转换而建立的元数据,它包含了数据源的各种属性以及转换时的各种属性;另一种元数据是用来与多维模型和前端工具建立映射用的。
3、粒度与分割
粒度是对数据仓库中的数据的综合程度高低的一个衡量。粒度越小,细节程度越高,综合程度越低,回答查询的种类越多;反之粒度越大,细节程度越低,综合程度越高,回答查询的种类越少。
分割是将数据分散到各自的物理单元中去以便能分别独立处理,以提高数据处理的效率。数据分割后的数据单元成为分片。数据分割的标准可以根据实际情况来确定,通常可选择按日期、地域或者业务领域等进行分割,也可以按照多个标准组合分割。
4、追加时数据的组织方式
这里说一种比较简单的情况,轮转综合文件。比如:数据存储单位被分为日、周、季度、年等几个级别。每天将数据记录在日记录集中;然后七天的数据被综合存放在周记录集中,每隔一季度周记录集中的数据被存放到季度记录集中,依此类推……这种方法把越早期的记录存放的综合程度越高,也就是粒度越大。