最大子序列和算法

王朝other·作者佚名  2006-01-09
窄屏简体版  字體: |||超大  

#include "stdio.h"

//算法1:

int MaxSubsequenceSum1(const int A[], int N)

{

int ThisSum, MaxSum, i, j, k;

MaxSum = 0;

for(i = 0; i < N; i++)

for(j = i; j < N; j++)

{

ThisSum = 0;

for(k = i; k <= j; k++)

ThisSum += A[k];

if(ThisSum > MaxSum)

MaxSum = ThisSum;

}

return MaxSum;

}

//算法2:

int MaxSubsequenceSum2(const int A[], int N)

{

int ThisSum, MaxSum, i, j;

MaxSum = 0;

for(i = 0; i < N; i++)

{

ThisSum = 0;

for(j = i; j < N; j++)

{

ThisSum += A[j];

if(ThisSum > MaxSum)

MaxSum = ThisSum;

}

}

return MaxSum;

}

//算法4:

int MaxSubsequenceSum4(const int A[], int N)

{

int ThisSum, MaxSum, i;

ThisSum = MaxSum = 0;

for(i = 0; i < N; i++)

{

ThisSum += A[i];

if(ThisSum > MaxSum)

MaxSum = ThisSum;

else if(ThisSum < 0)

ThisSum = 0;

}

return MaxSum;

}

//测试

int main()

{

int a[] = {-2, 11, -4, 13, -5, -2};

int size = sizeof(a) / sizeof(a[0]);

printf("MaxSubsequenceSum1 :%d\n", MaxSubsequenceSum1(a, size));

printf("MaxSubsequenceSum2 :%d\n", MaxSubsequenceSum2(a, size));

printf("MaxSubsequenceSum4 :%d\n", MaxSubsequenceSum4(a, size));

return 0;

}

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航