Decidability

王朝other·作者佚名  2006-01-09
窄屏简体版  字體: |||超大  

Theorem:

A (DFA) is a decidable language (accept)

Theorem:

A (NFA) is a decidable language (accept)

Theorem:

E (DFA) is a decidable language (empty)

Theorem:

EQ (DFA) is a decidable language (equal)

Theorem:

A (CFG) is a decidable language (accept)

Theorem:

E (CFG) is a decidable language (empty)

Theorem:

A (TM) is an undecidable language (accept)

The diagonalization method

R is uncountable

Some language is not Turing recognizable

The set of all Turing machines is countable

The set of all languages is uncountable.

Theorem:

A language is decidable if and only if it is both Turing-recognizable and co-Turing recognizable

A(TM) is not Turing recognizable.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航