辗转相除法和移位相减法(Euclid & stein 算法)
给出Stein算法如下:
如果A=0,B是最大公约数,算法结束 如果B=0,A是最大公约数,算法结束 设置A1 = A、B1=B和C1 = 1 如果An和Bn都是偶数,则An+1 =An /2,Bn+1 =Bn /2,Cn+1 =Cn *2(注意,乘2只要把整数左移一位即可,除2只要把整数右移一位即可) 如果An是偶数,Bn不是偶数,则An+1 =An /2,Bn+1 =Bn ,Cn+1 =Cn (很显然啦,2不是奇数的约数) 如果Bn是偶数,An不是偶数,则Bn+1 =Bn /2,An+1 =An ,Cn+1 =Cn (很显然啦,2不是奇数的约数) 如果An和Bn都不是偶数,则An+1 =|An -Bn|,Bn+1 =min(An,Bn),Cn+1 =Cn n++,转4 //greatest common divisor
//by heaton
//2005/03/11
#include <iostream>
using namespace std;
//交换a ,b的值
void swap(int& a1,int &b1)
{
int temp;
temp=a1;
a1=b1;
b1=temp;
}
//辗转相除法
int gcd(int a,int b)
{
if(a < b)swap(a,b);
int c=a%b;
//cout<<"辗转相除法\n"<<"a b\n"<<a<<" "<<b<<"\n";
while(c!=0)
{
a=b;
b=c;
cout<<a<<" "<<b<<"\n";
c=a%b;
}
return b;
}
//移位相减法
int gcd2(int a,int b)
{
if(a < b)swap(a,b);
//cout<<a<<" "<<b<<endl;//跟踪a,b的值
if(a==0)return b;
if(b==0)return a;
while(a != b)
{
if(( (a&1) == 0 ) && ( (b&1) == 0 )){
return 2*gcd2(a/2,b/2); //a,b are even numbers
}else if(( (a&1) == 1 ) && ( (b&1) == 0)){
return gcd2(a,b/2); //a is odd number , b is even number
}else if(((a&1) == 0 ) && ( (b&1) == 1) ){
return gcd2(a/2,b);//a....even ;b ...odd ...
}else if(((a&1) == 1 ) && ((b&1) == 1)){
return gcd2(b,(a-b)); //a,b are odd numbers
}
}
return b;
}
//通过递归调用求n个数的最大公约数
int ngcd(int a[],int n)
{
if (n==1)
return a[0];
else
return gcd2(a[n-1],ngcd(a,n-1));
}
int main()
{
int m=gcd(15,25);
cout<<m<<"\n 移位相减法\na b\n";
int n=gcd2(15,20);
cout<<n<<"\n the common divisor of array {450,90,15,45} \n";
int a[]={450,90,15,45};//应该先按升序对数组排序
int x=ngcd(a,4);
cout<<" value:"<<x<<endl;///??????
return 0;
}