分享
 
 
 

基于SMO方法的支持向量机Pascal代码实现

王朝other·作者佚名  2006-01-09
窄屏简体版  字體: |||超大  

SMO_SVM.pas:

{

Author: Liu Liu

Website: www.aivisoft.net

E-Mail: geo.cra@gmail.com

This code is translated from a p-code by J. Platt.

This code shows a SMO(Sequential Minimal Optimization) SVM.

Enjoy fast and efficient SVM!

This code now provide 4 different kernels.

}

unit SMO_SVM;

interface

uses

Windows, SysUtils, Variants, Classes, Graphics, Math;

type

TVector = record

Items: TSingleExtendedArray;

Target: Extended;

end;

TVectorArray = array of TVector;

TSingleExtendedArray = array of extended;

TKernels = (klLinear, klGsRBF, klExpRBF, klPolynomial, klTanh);

{

klLinear: Linear Kernel

klGsRBF: Gaussian RBF Kernel

klExpRBF: Exponential RBF Kernel

klPolynomial: Polynomial Kernel

klTanh: Tanh Kernel

}

TSVM = class

private

n_Degree, N: longint;

tolerance, eps, b: Extended;

alph, Error_Cache, w: TSingleExtendedArray;

function Learned_Func(k: longint): Extended;

function Kernel_Func(i1, i2: longint): Extended;

function PKernel_Func(i1: longint; Items2: TSingleExtendedArray): Extended;

function ExamineExamples(i2: longint): longint;

function TakeStep(i1, i2: longint): boolean;

public

end_support_i: longint; Vectors: TVectorArray;

C, two_sigma_squared, tha, thb, pyp: Extended;

Kernel: TKernels;

procedure Learn;

procedure Init(sn_Degree: longint; sC, stwo_sigma_squared, stha, sthb, spyp: Extended; sKernel: TKernels);

procedure LearnExamples(Data: TSingleExtendedArray; Target: Extended);

function Optimize: longint;

function Predict(Itemk: TSingleExtendedArray): Extended;

function SaveToFile(FileName: string): boolean;

function LoadFromFile(FileName: string): boolean;

destructor Destroy; override;

end;

implementation

procedure TSVM.Init(sn_Degree: longint; sC, stwo_sigma_squared, stha, sthb, spyp: Extended; sKernel: TKernels);

var

i: longint;

begin

n_Degree := sn_Degree;

setlength(Vectors, $100);

C := sC; eps := 0.001; tolerance := 0.001;

two_sigma_squared := stwo_sigma_squared;

tha := stha; thb := sthb; pyp := spyp;

N := 0; Kernel := sKernel;

setlength(w, n_Degree);

end;

procedure TSVM.LearnExamples(Data: TSingleExtendedArray; Target: Extended);

begin

if N > High(Vectors) then

setlength(Vectors, N + $100);

setlength(Vectors[N].Items, n_Degree);

Vectors[N].Items := Data;

Vectors[N].Target := Target;

Inc(N);

end;

function TSVM.Learned_Func(k: longint): Extended;

var

s: Extended;

i: longint;

begin

s := 0;

case Kernel of

klLinear: begin

for i := 0 to end_support_i - 1 do

if alph[i] > 0 then

s := s + alph[i] * Vectors[i].Target * Kernel_Func(i, k);

end;

else begin

for i := 0 to n_Degree - 1 do

s := s + w[i] * Vectors[k].Items[i];

end;

end;

s := s - b;

Result := s;

end;

function TSVM.Kernel_Func(i1, i2: longint): Extended;

var

s: Extended;

i: longint;

begin

s := 0;

case Kernel of

klLinear: begin

for i := 0 to n_Degree - 1 do

s := s + Vectors[i1].Items[i] * Vectors[i2].Items[i];

Result := s;

end;

klPolynomial: begin

for i := 0 to n_Degree - 1 do

s := s + Vectors[i1].Items[i] * Vectors[i2].Items[i];

Result := Exp(Ln(s + 1) * pyp);

end;

klExpRBF: begin

for i := 0 to n_Degree - 1 do

s := s + sqr(Vectors[i1].Items[i] - Vectors[i2].Items[i]);

Result := exp(-sqrt(s) / Two_Sigma_Squared);

end;

klGsRBF: begin

for i := 0 to n_Degree - 1 do

s := s + sqr(Vectors[i1].Items[i] - Vectors[i2].Items[i]);

Result := exp(-s / Two_Sigma_Squared);

end;

klTanh: begin

for i := 0 to n_Degree - 1 do

s := s + Vectors[i1].Items[i] * Vectors[i2].Items[i];

Result := Tanh(tha * s + thb);

end;

end;

end;

function TSVM.ExamineExamples(i2: longint): longint;

var

y2, alph2, E2, r2: Extended;

k, k0, i1: longint;

tmax, E1, temp: Extended;

begin

y2 := Vectors[i2].Target;

alph2 := alph[i2];

if (alph2 > 0) and (alph2 < C) then

E2 := Error_Cache[i2]

else

E2 := Learned_Func(i2) - y2;

r2 := y2 * E2;

if ((r2 < -tolerance) and (alph2 < C)) or ((r2 > tolerance) and (alph2 > 0)) then begin

i1 := -1; tmax := 0;

for k := 0 to end_support_i - 1 do begin

if (alph[k] > 0) and (alph[k] < C) then begin

E1 := Error_Cache[k];

temp := Abs(E1 - E2);

if (temp > tmax) then begin

tmax := temp;

i1 := k;

end;

end;

end;

if i1 >= 0 then

if takeStep(i1, i2) then begin

Result := 1;

exit;

end;

Randomize;

k0 := Random(end_support_i);

for k := k0 to end_support_i + k0 - 1 do begin

i1 := k mod end_support_i;

if (alph[i1] > 0) and (alph[i1] < C) then

if (takeStep(i1, i2)) then begin

Result := 1;

exit;

end;

end;

Randomize;

k0 := Random(end_support_i);

for k := k0 to end_support_i + k0 - 1 do begin

i1 := k mod end_support_i;

if takeStep(i1, i2) then begin

Result := 1;

exit;

end;

end;

end;

Result := 0;

end;

function TSVM.TakeStep(i1, i2: longint): boolean;

var

i: longint;

y1, y2, s: Extended;

alph1, alph2, gamma, c1, c2, b1, b2, bnew, delta_b: Extended;

a1, a2: Extended;

E1, E2, L, H, k11, k22, k12, eta, Lobj, Hobj, t, t1, t2: Extended;

begin

if (i1 = i2) then begin

Result := false;

exit;

end;

alph1 := alph[i1];

y1 := Vectors[i1].Target;

if (alph1 > 0) and (alph1 < C) then

E1 := Error_Cache[i1]

else

E1 := Learned_Func(i1) - y1;

alph2 := alph[i2];

y2 := Vectors[i2].Target;

if (alph2 > 0) and (alph2 < C) then

E2 := Error_Cache[i2]

else

E2 := Learned_Func(i2) - y2;

s := y1 * y2;

if (y1 = y2) then begin

gamma := alph1 + alph2;

if (gamma > C) then begin

L := gamma - C;

H := C;

end else begin

L := 0;

H := gamma;

end;

end else begin

gamma := alph1 - alph2;

if (gamma > 0) then begin

L := 0;

H := C - gamma;

end else begin

L := -gamma;

H := C;

end;

end;

if (L = H) then begin

Result := false;

exit;

end;

k11 := Kernel_Func(i1, i1);

k12 := Kernel_Func(i1, i2);

k22 := Kernel_Func(i2, i2);

eta := 2 * k12 - k11 - k22;

if (eta < 0) then begin

a2 := alph2 + y2 * (E2 - E1) / eta;

if (a2 < L) then a2 := L

else if (a2 > H) then a2 := H;

end else begin

c1 := eta / 2;

c2 := y2 * (E1 - E2) - eta * alph2;

Lobj := c1 * L * L + c2 * L;

Hobj := c1 * H * H + c2 * H;

if (Lobj > Hobj + eps) then a2 := L

else if (Lobj < Hobj - eps) then a2 := H

else a2 := alph2;

end;

if a2 < 1E-8 then a2 := 0

else if a2 > C - 1E-8 then a2 := C;

if abs(a2 - alph2) < eps * (a2 + alph2 + eps) then begin

Result := false;

exit;

end;

a1 := alph1 - s * (a2 - alph2);

if (a1 < 0) then begin

a2 := a2 + s * a1;

a1 := 0;

end else if (a1 > C) then begin

t := a1 - C;

a2 := a2 + s * t;

a1 := C;

end;

if (a1 > 0) and (a1 < C) then

bnew := b + E1 + y1 * (a1 - alph1) * k11 + y2 * (a2 - alph2) * k12

else begin

if (a2 > 0) and (a2 < C) then

bnew := b + E2 + y1 * (a1 - alph1) * k12 + y2 * (a2 - alph2) * k22

else begin

b1 := b + E1 + y1 * (a1 - alph1) * k11 + y2 * (a2 - alph2) * k12;

b2 := b + E2 + y1 * (a1 - alph1) * k12 + y2 * (a2 - alph2) * k22;

bnew := (b1 + b2) / 2;

end;

end;

delta_b := bnew - b;

b := bnew;

t1 := y1 * (a1 - alph1);

t2 := y2 * (a2 - alph2);

if Kernel = klLinear then

for i := 0 to n_Degree - 1 do

w[i] := w[i] + t1 * Vectors[i1].Items[i] + t2 * Vectors[i2].Items[i];

for i := 0 to end_support_i - 1 do

if (0 < alph[i]) and (alph[i] < C) then

Error_Cache[i] := Error_Cache[i] + t1 * Kernel_Func(i1, i) + t2 * Kernel_Func(i2, i) - delta_b;

Error_Cache[i1] := 0;

Error_Cache[i2] := 0;

alph[i1] := a1;

alph[i2] := a2;

Result := true;

end;

procedure TSVM.Learn;

var

numChanged, i: longint;

examineAll: boolean;

begin

end_support_i := N;

setlength(alph, N); setlength(Error_Cache, N);

for i := 0 to n_Degree - 1 do w[i] := 0;

for i := 0 to N - 1 do alph[i] := 0; b := 0;

numChanged := 0;

examineAll := true;

while (numChanged > 0) or examineAll do begin

numChanged := 0;

if examineAll then begin

for i := 0 to N - 1 do

Inc(numChanged, ExamineExamples(i));

end else begin

for i := 0 to N - 1 do

if (alph[i] <> 0) and (alph[i] <> C) then

Inc(numChanged, ExamineExamples(i));

end;

if examineAll then

examineAll := false

else if (numChanged = 0) then

examineAll := true;

end;

end;

function TSVM.PKernel_Func(i1: longint; Items2: TSingleExtendedArray): Extended;

var

s: Extended;

i: longint;

begin

s := 0;

case Kernel of

klLinear: begin

for i := 0 to n_Degree - 1 do

s := s + Vectors[i1].Items[i] * Items2[i];

Result := s;

end;

klPolynomial: begin

for i := 0 to n_Degree - 1 do

s := s + Vectors[i1].Items[i] * Items2[i];

Result := Exp(Ln(s + 1) * pyp);

end;

klExpRBF: begin

for i := 0 to n_Degree - 1 do

s := s + sqr(Vectors[i1].Items[i] - Items2[i]);

Result := exp(-sqrt(s) / Two_Sigma_Squared);

end;

klGsRBF: begin

for i := 0 to n_Degree - 1 do

s := s + sqr(Vectors[i1].Items[i] - Items2[i]);

Result := exp(-s / Two_Sigma_Squared);

end;

klTanh: begin

for i := 0 to n_Degree - 1 do

s := s + Vectors[i1].Items[i] * Items2[i];

Result := tanh(tha * s + thb);

end;

end;

end;

function TSVM.Optimize: longint;

var

Change: boolean;

i, j: longint;

begin

Change := true;

while Change do begin

Change := false;

for i := 0 to end_support_i - 1 do

if (alph[i] < 1E-8) and (alph[i] > -1E-8) then begin

for j := i + 1 to end_support_i - 1 do begin

Vectors[j - 1] := Vectors[j];

alph[j - 1] := alph[j];

end;

Change := true;

Dec(end_support_i);

break;

end;

end;

N := end_support_i;

setlength(Vectors, N); setlength(alph, N);

Result := end_support_i;

end;

function TSVM.Predict(Itemk: TSingleExtendedArray): Extended;

var

s: Extended;

i: longint;

begin

s := 0;

case Kernel of

klLinear: begin

for i := 0 to n_Degree - 1 do

s := s + w[i] * Itemk[i];

end;

else begin

for i := 0 to end_support_i - 1 do

if alph[i] > 0 then

s := s + alph[i] * Vectors[i].Target * PKernel_Func(i, Itemk);

end;

end;

s := s - b;

Result := s;

end;

function TSVM.SaveToFile(FileName: string): boolean;

var

i, j: longint;

SaveStream: TMemoryStream;

begin

SaveStream := TMemoryStream.Create;

SaveStream.Seek(0, soFromBeginning);

try

SaveStream.Write(end_support_i, sizeof(end_support_i));

SaveStream.Write(n_Degree, sizeof(n_Degree));

for i := 0 to end_support_i - 1 do begin

SaveStream.Write(Vectors[i].Target, sizeof(Vectors[i].Target));

SaveStream.Write(alph[i], sizeof(alph[i]));

for j := 0 to n_Degree - 1 do

SaveStream.Write(Vectors[i].Items[j], sizeof(Vectors[i].Items[j]));

end;

for i := 0 to n_Degree - 1 do

SaveStream.Write(w[i], sizeof(w[i]));

SaveStream.SaveToFile(FileName);

Result := true;

except

Result := false;

end;

SaveStream.Free;

end;

function TSVM.LoadFromFile(FileName: string): boolean;

var

i, j: longint;

ReadStream: TMemoryStream;

begin

ReadStream := TMemoryStream.Create;

try

ReadStream.LoadFromFile(FileName);

ReadStream.Seek(0, soFromBeginning);

ReadStream.Read(end_support_i, sizeof(end_support_i));

N := end_support_i;

setlength(Vectors, N); setlength(alph, N);

ReadStream.Read(n_Degree, sizeof(n_Degree));

for i := 0 to end_support_i - 1 do begin

ReadStream.Read(Vectors[i].Target, sizeof(Vectors[i].Target));

ReadStream.Read(alph[i], sizeof(alph[i]));

setlength(Vectors[i].Items, n_Degree);

for j := 0 to n_Degree - 1 do

ReadStream.Read(Vectors[i].Items[j], sizeof(Vectors[i].Items[j]));

end;

for i := 0 to n_Degree - 1 do

ReadStream.Read(w[i], sizeof(w[i]));

Result := true;

except

Result := false;

end;

ReadStream.Free;

end;

destructor TSVM.Destroy;

begin

setlength(Vectors, 0);

setlength(alph, 0);

setlength(w, 0);

inherited;

end;

end.

---------------------------------------------------

调用窗体:

unit UnitMain;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls, SMO_SVM;

type

TFrmMain = class(TForm)

ImgPoint: TImage;

BtnTrain: TButton;

BtnPredict: TButton;

RdbRed: TRadioButton;

RdbBlue: TRadioButton;

procedure BtnPredictClick(Sender: TObject);

procedure ImgPointMouseUp(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure BtnTrainClick(Sender: TObject);

private

MySVM: TSVM;

public

{ Public declarations }

end;

var

FrmMain: TFrmMain;

implementation

{$R *.dfm}

procedure TFrmMain.BtnPredictClick(Sender: TObject);

var

i, j, X, Y: longint;

point: TSingleExtendedArray;

begin

setlength(Point, 2);

for i := 0 to 320 do

for j := 0 to 320 do begin

point[0] := i / 320; point[1] := j / 320;

if MySVM.Predict(Point) > 0 then

ImgPoint.Canvas.Pixels[i, j] := clRed

else ImgPoint.Canvas.Pixels[i, j] := clBlue;

end;

for i := 0 to MySVM.end_support_i - 1 do begin

X := trunc(MySVM.Vectors[i].Items[0] * 320);

Y := trunc(MySVM.Vectors[i].Items[1] * 320);

if MySVM.Vectors[i].Target > 0 then begin

ImgPoint.Canvas.Pen.Style := psClear;

ImgPoint.Canvas.Brush.Color := $8080FF;

ImgPoint.Canvas.Ellipse(X - 4, Y - 4, X + 4, Y + 4);

end else begin

ImgPoint.Canvas.Pen.Style := psClear;

ImgPoint.Canvas.Brush.Color := $FF8080;

ImgPoint.Canvas.Ellipse(X - 4, Y - 4, X + 4, Y + 4);

end;

end;

end;

procedure TFrmMain.ImgPointMouseUp(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);

var

point: TSingleExtendedArray;

Outs: Extended;

begin

setlength(Point, 2);

point[0] := X / 320;

point[1] := Y / 320;

if rdbred.Checked then outs := 1 else outs := -1;

MySVM.LearnExamples(point, outs);

if rdbred.Checked then begin

ImgPoint.Canvas.Pen.Style := psClear;

ImgPoint.Canvas.Brush.Color := $8080FF;

ImgPoint.Canvas.Ellipse(X - 3, Y - 3, X + 3, Y + 3);

end else begin

ImgPoint.Canvas.Pen.Style := psClear;

ImgPoint.Canvas.Brush.Color := $FF8080;

ImgPoint.Canvas.Ellipse(X - 3, Y - 3, X + 3, Y + 3);

end;

end;

procedure TFrmMain.FormCreate(Sender: TObject);

begin

MySVM := TSVM.Create;

MySVM.Init(2, 100, 1, 2, 1, 8, klGsRBF);

DoubleBuffered := True;

ImgPoint.Canvas.FillRect(Rect(0, 0, 320, 320));

end;

procedure TFrmMain.FormDestroy(Sender: TObject);

begin

MySVM.Free;

end;

procedure TFrmMain.BtnTrainClick(Sender: TObject);

begin

MySVM.Learn;

Application.MessageBox(PChar('There are/is ' + IntToStr(MySVM.Optimize) + ' support vector(s).'), 'Result');

end;

end.

-------------------------------

Related Url: http://research.microsoft.com/users/jplatt/smo.html

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有