提高开关电源效率的电路技术 文章来源:电子元器件查询网

王朝厨房·作者佚名  2007-01-04
窄屏简体版  字體: |||超大  

其中,第一种方法对于降低开关损耗极为有效,但问题是因峰值电流和峰值电压所导致的固定损耗将会增加。第二种方法是为解决该问题而开发的有源缓冲器(Active Snubber),是一种极为实用的ZVS方式;但是,由轻负载条件下的无功电流所引发的效率下降问题却是其一大缺陷。第三种方法中,采用抽头电感器(Tap Inductor)的方式是比较有效的,它能够应付由漏感所引起的浪涌现象。关于第四种方法,两段式结构是实现同步整流电路高效工作的方法之一,它采用接近0.5的固定时间比率(Time Ratio),并由前段的转换器来进行输出电压控制。它一反“两段式结构将导致效率下降”这一传统思维模式,在低电压大电流的场合非常有效。至于第五种方法,既可将整个转换器电路进行并联,也可像电流倍增器(Current Doubler)那样部分采用并联结构。下面将对利用转换器的并联操作所实现的效率提升情况进行简要阐述。

并联结构转换器实现高效化

1.采用转换器并联结构的效率改善

图1示出了采用单个转换器和两个并联转换器的不同转换器系统结构。这些并联的转换器是完全相同的,内阻为r,固定损耗为PC。设负载电压为VO,负载电流为IO,则采用单个转换器时的电效率ηS为:

ηS = VOIO /(VOI_ + PC + rIO2) (1)

图2描绘了负载电流与效率特性的关系曲线。

对于采用并联转换器结构的场合而言,其功率效率为:

ηP=VOIOVO/(VOIO+2PC+(k2+(1- k)2 )rIO2) (2)

式中,k为负载电流的分割比。

效率改善率F被定义为:

F≡(ηP-ηS)/ηS×100% (3)

将(1)式和(2)式代入可得出:

F=(2k(1-k) rIO2 - PC)/((2k2- 2k+1)rIO2+2PC + VOIO) (4)

该效率改善率与负载电流的关系曲线示于图3。由图可知,k=0.5时的效率改善率最高。

另外,如果将负载电流集中于一个转换器反而会使效率下降,这是由于存在固定损耗造成的。

2.采用PFC(功率因数校正)型转换器时的效率改善

以往的一段式PFC转换器为了在改善输入电流波形的同时减小输出电压纹波而采用了图4所示的混合并联(Hybrid Parallel

其中,第一种方法对于降低开关损耗极为有效,但问题是因峰值电流和峰值电压所导致的固定损耗将会增加。第二种方法是为解决该问题而开发的有源缓冲器(Active Snubber),是一种极为实用的ZVS方式;但是,由轻负载条件下的无功电流所引发的效率下降问题却是其一大缺陷。第三种方法中,采用抽头电感器(Tap Inductor)的方式是比较有效的,它能够应付由漏感所引起的浪涌现象。关于第四种方法,两段式结构是实现同步整流电路高效工作的方法之一,它采用接近0.5的固定时间比率(Time Ratio),并由前段的转换器来进行输出电压控制。它一反“两段式结构将导致效率下降”这一传统思维模式,在低电压大电流的场合非常有效。至于第五种方法,既可将整个转换器电路进行并联,也可像电流倍增器(Current Doubler)那样部分采用并联结构。下面将对利用转换器的并联操作所实现的效率提升情况进行简要阐述。

并联结构转换器实现高效化

1.采用转换器并联结构的效率改善

图1示出了采用单个转换器和两个并联转换器的不同转换器系统结构。这些并联的转换器是完全相同的,内阻为r,固定损耗为PC。设负载电压为VO,负载电流为IO,则采用单个转换器时的电效率ηS为:

ηS = VOIO /(VOI_ + PC + rIO2) (1)

图2描绘了负载电流与效率特性的关系曲线。

对于采用并联转换器结构的场合而言,其功率效率为:

ηP=VOIOVO/(VOIO+2PC+(k2+(1- k)2 )rIO2) (2)

式中,k为负载电流的分割比。

效率改善率F被定义为:

F≡(ηP-ηS)/ηS×100% (3)

将(1)式和(2)式代入可得出:

F=(2k(1-k) rIO2 - PC)/((2k2- 2k+1)rIO2+2PC + VOIO) (4)

该效率改善率与负载电流的关系曲线示于图3。由图可知,k=0.5时的效率改善率最高

另外,如果将负载电流集中于一个转换器反而会使效率下降,这是由于存在固定损耗造成的。

2.采用PFC(功率因数校正)型转换器时的效率改善

以往的一段式PFC转换器为了在改善输入电流波形的同时减小输出电压纹波而采用了图4所示的混合并联(Hybrid Parallel,简称HP)方式。这种PFC转换器所采用的并联结构是把以不连续电流模式工作的回扫型转换器置于上部,而将普通的回扫型DC/DC转换器置于下部。

在这种场合,出于改善输入电流波形的需要,通过调整两个变压器的激励电感的方法来使上部的电流占全部电流的70%~80%。因此,即使是对于5A这样的大电流也能够获得满足IEC规格5级标准(Class 5)的电流波形。但由图3可知,从改善效率的角度考虑,采用并联结构只是在负载电流分割比 k = 0.7~0.8的情况下才能获得满意的效果。为此人们对图4所示的电路进行了改良,即通过改变传统HP-PFC转换器输入端体电容的充电路径(Charging Path)的方法来抑制峰值输入电流(参见图5)。

这种改良型PFC转换器的输入电流波形满足IEC规格D级标准(Class D),而且可把负载电流分割比k设定为0.5~0.6,从而进一步提升效率。图6对HP-PFC转换器改进前后的效率指标进行了对比。

参考文献

1 Journal of Power Electronics, Vol.2, No.3, 2002

2 APEC'02 Proceedings, pp.735-741, 2002

3 信学技法, Vol.102, No.643, pp.77-82, EE2002-76

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航