《国立交通大学 偏微分方程(一)》(Partial Differential Equations)97学年度 应用数学系 林琦焜老师

王朝资源·作者佚名  2010-04-21
 说明  因可能的版权问题本站不提供该资源的存贮、播放、下载或推送,本文仅为内容简介。

中文名: 国立交通大学 偏微分方程(一)

英文名: Partial Differential Equations

别名: 数学物理方程

版本: 97学年度 应用数学系 林琦焜老师

发行时间: 2008年

地区: 台湾

对白语言: 普通话,英语

文字语言: 繁体中文

简介:

开拓视野新学习 数学交流新气象

本课程是由交通大学应用数学系提供。

本课程属研究所程度的微分方程课程,授课偏重於数学与物理间的连结,并且让学生藉由此课程了解直观地PDE概念。

授课教师 应用数学系 林琦焜老师

授课时数 每週3小时

授课学分 3学分

授课学期 97学年度

授课对象 研究所学生

预备知识 Calculus, Advanced Calculus, Linear Algebra,Ordinary differential equation,Complex Analysis and Real analysis

课程纲要

课程目标/概述

本课程属研究所程度的微分方程课程,授课偏重於数学与物理间的连结,并且让学生藉由此课程了解直观地PDE概念。

课程章节

第一章 The Single First-Order Equation

第二章 Second-Order Equations: Hyperbolic Equations for Functions of Two Independent Variables

第三章 Characteristic Manifolds and Cauchy Problem

第四章 The Laplace Equation

课程书目

* Partial Differential Equations (4th Edition), Fritz John

* Applied Mathematical Sciences Vol.1, Springer-Verlag 1982

课程纲要

单元主题

内容纲要

第一章 The Single First-Order Equation

1-1 Introduction Partial differential equations occur throughout mathematics. In this part we will give some examples

1-2 Examples

1-3 Analytic Solution and Approximation methods in a simple example 1-st order linear example

1-4 Quasilinear Equation The concept of characteristic

1-5 The Cauchy Problem for the Quasilinear-linear Equations

1-6 Examples Solved problems

1-7 The general first-order equation for a function of two variables characteristic curves, envelope

1-8 The Cauchy Problem characteristic curves, envelope

1-9 Solutions generated as envelopes

第二章Second-Order Equations: Hyperbolic Equations for Functions of Two Independent Variables

2-1 Characteristics for Linear and Quasilinear Second-Order Equations Characteristic

2-2 Propagation of Singularity Characteristic curve and singularity

2-3 The Linear Second-Order Equation classification of 2nd order equation

2-4 The One-Dimensional Wave Equation dAlembert formula, dimond law, Fourier series

2-5 System of First-Order Equations Canonical form, Characteristic polynominal

2-6 A Quasi-linear System and Simple Waves Concept of simple wave

第三章 Characteristic Manifolds and Cauchy Problem

3-1 Natation of Laurent Schwartz Multi-index notation

3-2 The Cauchy Problem Characteristic matrix, characteristic form

3-3 Real Analytic Functions and the Cauchy-Kowalevski Theorem Local existence of solutions of the non-characteristic

3-4 The Lagrange-Green Identity Gauss divergence theorem

3-5 The Uniqueness Theorem of Holmgren Uniqueness of analytic partial differential equations

3-6 Distribution Solutions Introdution of Laurent Schwartzs theory of distribution (generalized function)

第四章 The Laplace Equation

4-1 Greens Identity, Fundamental Solutions, and Poissons Equation Dirichlet problem, Neumann problem, spherical symmetry, mean value theorem, Poisson formula

4-2 The Maximal Principle harmonic and subharmonic functions

4-3 The Dirichlet Problem, Greens Function, and Poisson Formula Symmetric point, Poisson kernel

4-4 Perrons method Existence proof of the Dirichlet problem

4-5 Solution of the Dirichlet Problem by Hilbert-Space Methods Functional analysis, Riesz representation theorem, Dirichlet integra

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航