本文前言:空间物理学主要研究地球20-30公里高度直到太阳大气这一广阔的日地空间环境中的基本物理过程。武汉大学是我国最早开展电离层及电波传播研究和教学的单位。1981年,武汉大学空间物理学被批准为我国首批博士学位授权点之一,1988年被确定为国家级重点学科,1997年,经论证进入“211工程”国家重点学科建设项目,总投入强度达1335万元。主要研究方向:电离层与磁层研究、中高层大气环境及其电磁波诊断方法、日地系统扰动传播及空间天气预测等。
空间物理监测学是们很复杂的学问,它的研究监测范围则按其监测对象大致可以分为中层大气、高层大气、电离层、磁层、日球、宇宙线监测等。在这里笔者不想多说,为了简单明了的让军事迷们明白,我就简单说明下高速战机在空间物理场中引发的一系列物理变化。
飞机在空中飞行时高速的,在飞行中会引起空气涡流、空气压力变化、空气带电离子变化、水蒸气变化、红外辐射等一系列的空间场景变化,这种变化是很剧烈的,能监测到这种变化的物理现象,就能监测到任何飞机的行踪,当然,这也是很困难的。最早的空间物理场监测手段,就是红外监测,红外雷达可以归纳到这一类,但红外监测飞机具有局限性,就是监测距离一般都比较短,大多在50公里以内。
现在第四代战机又加装了红外抑制技术,并采取了多种红外诱导手段,使监测能力大打折扣。广大军事迷们都会在歼11的图片上看到驾驶舱前面有一个圆形的突出物体,它就是歼11的红外线探测雷达,它能够探测到40公里以外的空中100W的红外能量体,拿军方的话来说,就是在40公里的位置上发现第三代战机(如F16)喷气热能量,由于F22等四代战机采用了红外抑制技术,发现距离最远大概是20公里。
如果想让隐形战机现身,空气水蒸气电离子监测是最有效的手段。喷气战机在空中飞行,机身会和大气剧烈摩擦,从而使周边空气分子和水蒸气分子带电,在空中形成一个彗星型的电离子带,如水面舰艇行驶留下的尾流现象。能监测到这个空间电离子带,任何战斗飞机也无法躲避被追踪的命运。我国最早于2002年开始研制空间电离子监测雷达,当时的用途是用来进行天气监测,监测空气中带电的云团,来给未来战场提供准确的天气情报。云团是怎样带电的,这个大家都很清楚,我这里也不需要进行介绍。空间电离子监测是项复杂的技术,工作原理就是发射一定频率的电磁脉冲波,电磁脉冲波与空间电离子相撞,产生新的放电现象,再用高精度接收器接收放电现象产生的电波。2004年我国第一台实验性空间电离子监测天气预报雷达研究成功,在计算机等新技术的支持下,我国又于2008年设计出两坐标空间电离子监测天气预报雷达。2008年9月,新的两坐标空间电离子监测天气预报雷达在东南沿海测试过程中,无意发现了几个扫帚型电离子带,电离子带的快速移动引起在场科技人员的极大兴趣,后经望眼镜观测,是我国海军航空兵的某战机中队在实验区域做飞行训练。消息传到军委后引起极大的震动,在10月份就下达了军用空间三坐标电离子监测雷达的命令,要求在2012年以前研制成功并装备部队。
然而,空间电离子监测雷达的研制却影响到了我国第四代战机的进度,因为以前的隐身设计理念面临全面落伍的危险,沈阳飞机研究所于2009年对我国F-XX第四代机设计方案进行重新修整,可以确定的是,新的第四代战机外形绝对不是美国F22那样的,也不要用F22战机所具有的技术特征来衡量我国的F-XX第四代机。
我国在空间物理场监测方面研究目前是走在世界最前沿的,并世界首次破解了“音障空气蒸气锥”现象,这得益于我国科学家的辛勤努力。“音障空气蒸气锥”现象,比较专业的军迷都会知道,就是超音速战斗机在进入音速的瞬间,在机体周围出现的蒸气锥现象。以前世界上的科学家都对这种现象难以理解,不能给出合理的解释。我国的一位韩氏科学家在2008年指出,“音障空气蒸气锥”现象是空压电离子引发的物理效应耦合现象,被科学界称为韩氏耦合效应。韩氏耦合效应也为我国空间电离子监测雷达指明了一条无限广阔的光辉大道。(由于一些内容牵涉到军事技术保密,笔者没有写入,还请广大军迷谅解)