分享
 
 
 

韩信点兵算法是什么?

王朝军事·作者佚名  2009-11-08
窄屏简体版  字體: |||超大  

韩信点兵算法是什么?韩信点兵是一个有趣的猜数游戏。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

 这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

  三人同行七十稀,

  五树梅花廿一枝,

  七子团圆正半月,

  除百零五便得知。

 这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

 因此,你可以知道,原来这一堆蚕豆有37粒。

 1900年,德国大数学家大卫·希尔伯特归纳了当时世界上尚未解决的最困难的23个难题。后来,其中的第十问题在70年代被解决了,这是近代数学的五个重大成就。据证明人说,在解决问题的过程中,他是受到了“中国剩余定理”的启发的。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

 这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

  三人同行七十稀,

  五树梅花廿一枝,

  七子团圆正半月,

  除百零五便得知。

 这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

 因此,你可以知道,原来这一堆蚕豆有37粒。

 1900年,德国大数学家大卫·希尔伯特归纳了当时世界上尚未解决的最困难的23个难题。后来,其中的第十问题在70年代被解决了,这是近代数学的五个重大成就。据证明人说,在解决问题的过程中,他是受到了“中国剩余定理”的启发的。“中国剩余定理”

韩信点兵是一个有趣的猜数游戏。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

三人同行七十稀,

五树梅花廿一枝,

七子团圆正半月,

除百零五便得知。

这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

因此,你可以知道,原来这一堆蚕豆有37粒。韩信是秦末汉初的著名思想家,据说,有一次汉高祖刘邦在卫士的簇拥下来到练兵场,刘邦问韩信有什么办法,不要逐个报数,就能知道场上士兵的人数,韩信先令士兵排成三列纵队,结果有两个人多余,接着立即下令将队形改为5列纵队,这一改,又多出3人,随后他又下令改为7列纵队,这次又剩下2人无法成整行,在场的人都哈哈大笑,以为韩信不能清点出准确的人数,不料笑声刚落,韩信高声报告共有士兵2333人,众人听了一愣,不知道他用了什么方法这么快就能得出正确的结果。今天,我们知道他是利用算法思想解决的。事实上我们并不陌生算法。小学的四则混合运算所遵循的先乘除后加减的规则,括号处理的规则,都是最初接触到的算法案例,初中学习的方程组的解法也是算法的典型体现,高中学习的二分法,更成了算法的经典,在数学上对算法进行研究,我们更关注解决数学问题的算法,实际上解决数学问题也是在一定条件下按某种顺序执行的一系列操作,例如,解方程3x-4=2(x+5)步骤是去括号,移项,合并同类项,系数化为1,按照这样的步骤就能达到求出未知数的目的。同时,其他学科也离不开算法,算法已经深入到各行各业以及数学的各个领域,随着科学的发展,算法将发挥越来越重要的作用。韩信点兵算法是什么?韩信点兵是一个有趣的猜数游戏。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

 这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

  三人同行七十稀,

  五树梅花廿一枝,

  七子团圆正半月,

  除百零五便得知。

 这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

 因此,你可以知道,原来这一堆蚕豆有37粒。

 1900年,德国大数学家大卫·希尔伯特归纳了当时世界上尚未解决的最困难的23个难题。后来,其中的第十问题在70年代被解决了,这是近代数学的五个重大成就。据证明人说,在解决问题的过程中,他是受到了“中国剩余定理”的启发的。韩信是秦末汉初的著名思想家,据说,有一次汉高祖刘邦在卫士的簇拥下来到练兵场,刘邦问韩信有什么办法,不要逐个报数,就能知道场上士兵的人数,韩信先令士兵排成三列纵队,结果有两个人多余,接着立即下令将队形改为5列纵队,这一改,又多出3人,随后他又下令改为7列纵队,这次又剩下2人无法成整行,在场的人都哈哈大笑,以为韩信不能清点出准确的人数,不料笑声刚落,韩信高声报告共有士兵2333人,众人听了一愣,不知道他用了什么方法这么快就能得出正确的结果。今天,我们知道他是利用算法思想解决的。事实上我们并不陌生算法。小学的四则混合运算所遵循的先乘除后加减的规则,括号处理的规则,都是最初接触到的算法案例,初中学习的方程组的解法也是算法的典型体现,高中学习的二分法,更成了算法的经典,在数学上对算法进行研究,我们更关注解决数学问题的算法,实际上解决数学问题也是在一定条件下按某种顺序执行的一系列操作,例如,解方程3x-4=2(x+5)步骤是去括号,移项,合并同类项,系数化为1,按照这样的步骤就能达到求出未知数的目的。同时,其他学科也离不开算法,算法已经深入到各行各业以及数学的各个领域,随着科学的发展,算法将发挥越来越重要的作用。“中国剩余定理”

韩信点兵是一个有趣的猜数游戏。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

三人同行七十稀,

五树梅花廿一枝,

七子团圆正半月,

除百零五便得知。

这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

因此,你可以知道,原来这一堆蚕豆有37粒。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

 这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

  三人同行七十稀,

  五树梅花廿一枝,

  七子团圆正半月,

  除百零五便得知。

 这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

 因此,你可以知道,原来这一堆蚕豆有37粒。

 1900年,德国大数学家大卫·希尔伯特归纳了当时世界上尚未解决的最困难的23个难题。后来,其中的第十问题在70年代被解决了,这是近代数学的五个重大成就。据证明人说,在解决问题的过程中,他是受到了“中国剩余定理”的启发的。韩信点兵算法是什么?韩信点兵是一个有趣的猜数游戏。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

 这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

  三人同行七十稀,

  五树梅花廿一枝,

  七子团圆正半月,

  除百零五便得知。

 这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

 因此,你可以知道,原来这一堆蚕豆有37粒。

 1900年,德国大数学家大卫·希尔伯特归纳了当时世界上尚未解决的最困难的23个难题。后来,其中的第十问题在70年代被解决了,这是近代数学的五个重大成就。据证明人说,在解决问题的过程中,他是受到了“中国剩余定理”的启发的。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

 这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

  三人同行七十稀,

  五树梅花廿一枝,

  七子团圆正半月,

  除百零五便得知。

 这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

 因此,你可以知道,原来这一堆蚕豆有37粒。

 1900年,德国大数学家大卫·希尔伯特归纳了当时世界上尚未解决的最困难的23个难题。后来,其中的第十问题在70年代被解决了,这是近代数学的五个重大成就。据证明人说,在解决问题的过程中,他是受到了“中国剩余定理”的启发的。“中国剩余定理”

韩信点兵是一个有趣的猜数游戏。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

三人同行七十稀,

五树梅花廿一枝,

七子团圆正半月,

除百零五便得知。

这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

因此,你可以知道,原来这一堆蚕豆有37粒。韩信是秦末汉初的著名思想家,据说,有一次汉高祖刘邦在卫士的簇拥下来到练兵场,刘邦问韩信有什么办法,不要逐个报数,就能知道场上士兵的人数,韩信先令士兵排成三列纵队,结果有两个人多余,接着立即下令将队形改为5列纵队,这一改,又多出3人,随后他又下令改为7列纵队,这次又剩下2人无法成整行,在场的人都哈哈大笑,以为韩信不能清点出准确的人数,不料笑声刚落,韩信高声报告共有士兵2333人,众人听了一愣,不知道他用了什么方法这么快就能得出正确的结果。今天,我们知道他是利用算法思想解决的。事实上我们并不陌生算法。小学的四则混合运算所遵循的先乘除后加减的规则,括号处理的规则,都是最初接触到的算法案例,初中学习的方程组的解法也是算法的典型体现,高中学习的二分法,更成了算法的经典,在数学上对算法进行研究,我们更关注解决数学问题的算法,实际上解决数学问题也是在一定条件下按某种顺序执行的一系列操作,例如,解方程3x-4=2(x+5)步骤是去括号,移项,合并同类项,系数化为1,按照这样的步骤就能达到求出未知数的目的。同时,其他学科也离不开算法,算法已经深入到各行各业以及数学的各个领域,随着科学的发展,算法将发挥越来越重要的作用。韩信点兵算法是什么?韩信点兵是一个有趣的猜数游戏。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

 这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

  三人同行七十稀,

  五树梅花廿一枝,

  七子团圆正半月,

  除百零五便得知。

 这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

 因此,你可以知道,原来这一堆蚕豆有37粒。

 1900年,德国大数学家大卫·希尔伯特归纳了当时世界上尚未解决的最困难的23个难题。后来,其中的第十问题在70年代被解决了,这是近代数学的五个重大成就。据证明人说,在解决问题的过程中,他是受到了“中国剩余定理”的启发的。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

 这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

  三人同行七十稀,

  五树梅花廿一枝,

  七子团圆正半月,

  除百零五便得知。

 这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

 因此,你可以知道,原来这一堆蚕豆有37粒。

 1900年,德国大数学家大卫·希尔伯特归纳了当时世界上尚未解决的最困难的23个难题。后来,其中的第十问题在70年代被解决了,这是近代数学的五个重大成就。据证明人说,在解决问题的过程中,他是受到了“中国剩余定理”的启发的。“中国剩余定理”

韩信点兵是一个有趣的猜数游戏。如果你随便拿一把蚕豆(数目约在100粒左右),先3粒3粒地数,直到不满3粒时,把余数记下来;第二次再5粒5粒地数,最后把余数记下来;第三次是7粒一数,把余数记下来。然后根据每次的余数,就可以知道你原来拿了多少粒蚕豆了。不信的话,你还可以试验一下。例如,假如3粒一数余1粒,5粒一数余2粒,7粒一数余2粒,那么,原有蚕豆有多少粒呢?

这类题目看起来是很难计算的,可是我国古时候却流传着一种算法,名称也很多,宋朝周密叫它“鬼谷算”,又名“隔墙算”;杨辉叫它“剪管术”;而比较通行的名称是“韩信点兵”。最初记述这类算法的是一本名叫《孙子算经》的书,后来在宋朝经过数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀:

三人同行七十稀,

五树梅花廿一枝,

七子团圆正半月,

除百零五便得知。

这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比105大,就再减去105,直到得数比105小为止。这样,所得的数就是原来的数了。根据这个道理,你可以很容易地把前面的五个题目列成算式:

1×70+2×21+2×15-105

=142-105

=37

因此,你可以知道,原来这一堆蚕豆有37粒。韩信是秦末汉初的著名思想家,据说,有一次汉高祖刘邦在卫士的簇拥下来到练兵场,刘邦问韩信有什么办法,不要逐个报数,就能知道场上士兵的人数,韩信先令士兵排成三列纵队,结果有两个人多余,接着立即下令将队形改为5列纵队,这一改,又多出3人,随后他又下令改为7列纵队,这次又剩下2人无法成整行,在场的人都哈哈大笑,以为韩信不能清点出准确的人数,不料笑声刚落,韩信高声报告共有士兵2333人,众人听了一愣,不知道他用了什么方法这么快就能得出正确的结果。今天,我们知道他是利用算法思想解决的。事实上我们并不陌生算法。小学的四则混合运算所遵循的先乘除后加减的规则,括号处理的规则,都是最初接触到的算法案例,初中学习的方程组的解法也是算法的典型体现,高中学习的二分法,更成了算法的经典,在数学上对算法进行研究,我们更关注解决数学问题的算法,实际上解决数学问题也是在一定条件下按某种顺序执行的一系列操作,例如,解方程3x-4=2(x+5)步骤是去括号,移项,合并同类项,系数化为1,按照这样的步骤就能达到求出未知数的目的。同时,其他学科也离不开算法,算法已经深入到各行各业以及数学的各个领域,随着科学的发展,算法将发挥越来越重要的作用。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有