分享
 
 
 

能否祥解“韩信点兵”

王朝军事·作者佚名  2009-11-08
窄屏简体版  字體: |||超大  

rt老数学名词

为什么是那种原理呢?这是一个数论的题,讲的是不定方程的解,对于特例,就是韩信点兵。

他的解法(...)

(很抱歉,刚才有事中断了)

这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。在数论中称"孙子定理".到了明代(1593年),数学家程大位用诗歌概括了这一算法,他写道:

三人同行七十稀,五树梅花廿一枝,

七子团圆月正半,除百零五便得知。

即把3的余数乘70,5的余数乘21,7的余数乘15,而后相加,再减去105,就得答案,

从数论的观点来说,这是一个特解,而通解是特解+105k,(k为任意整数)

剩余定理“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这个问题就是韩信点兵。

传说西汉大将韩信,由于比较年轻,开始他的部下对他不很佩服。有一次阅兵时,韩信要求士兵分三路纵队,结果末尾多2人,改成五路纵队,结果末尾多3人,再改成七路纵队,结果又余下2人,后来下级军官向他报告共有士兵2395人,韩信立即笑笑说不对(因2395除以3余数是1,不是2),由于已经知道士兵总人数在2300?/font>2400之间,所以韩信根据23,128,233,------,每相邻两数的间隔是105,便立即说出实际人数应是2333人(因2333=128+20χ105+105,它除以3余2,除以5余3,除以7余2)。这样使下级军官十分敬佩,这就是韩信点兵的故事。

这一类题目又叫中国剩余定理,在世界上是很有名的,它不仅有趣,而且在现代数学与电子计算机的计算中,都有应用,这是值得我们中华民族引以为荣的。rt老数学名词

为什么是那种原理呢?这是一个数论的题,讲的是不定方程的解,对于特例,就是韩信点兵。

他的解法(...)

(很抱歉,刚才有事中断了)

这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。在数论中称"孙子定理".到了明代(1593年),数学家程大位用诗歌概括了这一算法,他写道:

三人同行七十稀,五树梅花廿一枝,

七子团圆月正半,除百零五便得知。

即把3的余数乘70,5的余数乘21,7的余数乘15,而后相加,再减去105,就得答案,

从数论的观点来说,这是一个特解,而通解是特解+105k,(k为任意整数)

“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这个问题就是韩信点兵。

传说西汉大将韩信,由于比较年轻,开始他的部下对他不很佩服。有一次阅兵时,韩信要求士兵分三路纵队,结果末尾多2人,改成五路纵队,结果末尾多3人,再改成七路纵队,结果又余下2人,后来下级军官向他报告共有士兵2395人,韩信立即笑笑说不对(因2395除以3余数是1,不是2),由于已经知道士兵总人数在2300?/font>2400之间,所以韩信根据23,128,233,------,每相邻两数的间隔是105,便立即说出实际人数应是2333人(因2333=128+20χ105+105,它除以3余2,除以5余3,除以7余2)。这样使下级军官十分敬佩,这就是韩信点兵的故事。

这一类题目又叫中国剩余定理,在世界上是很有名的,它不仅有趣,而且在现代数学与电子计算机的计算中,都有应用,这是值得我们中华民族引以为荣的。

剩余定理rt老数学名词

为什么是那种原理呢?这是一个数论的题,讲的是不定方程的解,对于特例,就是韩信点兵。

他的解法(...)

(很抱歉,刚才有事中断了)

这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。在数论中称"孙子定理".到了明代(1593年),数学家程大位用诗歌概括了这一算法,他写道:

三人同行七十稀,五树梅花廿一枝,

七子团圆月正半,除百零五便得知。

即把3的余数乘70,5的余数乘21,7的余数乘15,而后相加,再减去105,就得答案,

从数论的观点来说,这是一个特解,而通解是特解+105k,(k为任意整数)

“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这个问题就是韩信点兵。

传说西汉大将韩信,由于比较年轻,开始他的部下对他不很佩服。有一次阅兵时,韩信要求士兵分三路纵队,结果末尾多2人,改成五路纵队,结果末尾多3人,再改成七路纵队,结果又余下2人,后来下级军官向他报告共有士兵2395人,韩信立即笑笑说不对(因2395除以3余数是1,不是2),由于已经知道士兵总人数在2300?/font>2400之间,所以韩信根据23,128,233,------,每相邻两数的间隔是105,便立即说出实际人数应是2333人(因2333=128+20χ105+105,它除以3余2,除以5余3,除以7余2)。这样使下级军官十分敬佩,这就是韩信点兵的故事。

这一类题目又叫中国剩余定理,在世界上是很有名的,它不仅有趣,而且在现代数学与电子计算机的计算中,都有应用,这是值得我们中华民族引以为荣的。

剩余定理rt老数学名词

为什么是那种原理呢?这是一个数论的题,讲的是不定方程的解,对于特例,就是韩信点兵。

他的解法(...)

(很抱歉,刚才有事中断了)

这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。在数论中称"孙子定理".到了明代(1593年),数学家程大位用诗歌概括了这一算法,他写道:

三人同行七十稀,五树梅花廿一枝,

七子团圆月正半,除百零五便得知。

即把3的余数乘70,5的余数乘21,7的余数乘15,而后相加,再减去105,就得答案,

从数论的观点来说,这是一个特解,而通解是特解+105k,(k为任意整数)

“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这个问题就是韩信点兵。

传说西汉大将韩信,由于比较年轻,开始他的部下对他不很佩服。有一次阅兵时,韩信要求士兵分三路纵队,结果末尾多2人,改成五路纵队,结果末尾多3人,再改成七路纵队,结果又余下2人,后来下级军官向他报告共有士兵2395人,韩信立即笑笑说不对(因2395除以3余数是1,不是2),由于已经知道士兵总人数在2300?/font>2400之间,所以韩信根据23,128,233,------,每相邻两数的间隔是105,便立即说出实际人数应是2333人(因2333=128+20χ105+105,它除以3余2,除以5余3,除以7余2)。这样使下级军官十分敬佩,这就是韩信点兵的故事。

这一类题目又叫中国剩余定理,在世界上是很有名的,它不仅有趣,而且在现代数学与电子计算机的计算中,都有应用,这是值得我们中华民族引以为荣的。

剩余定理

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有