祖冲之是真样算出圆周率的?????????????注意!!!祖冲之求圆周率,具体用的是什么方法,现在学术界还在争论不休,割圆术是刘徽的,至于祖冲之是否用的割圆术,至今没有定论!大家只是猜测他可能使用的是割圆术而已。“祖冲之关于圆周率的研究工作和其他重大贡献记载在《缀术》一书中,可惜这部内容丰富的数学专著后来失传了。因此,祖冲之推算圆周率的方法现在已经无法查考。”相关资料:刘徽割圆术在解决求圆周长、圆面积、球体积等类问题的时候,经常要用到圆周率л。圆周率л可以表示成无限不循环小数3.1415926535……。近代数学已经证明,圆周率л是一个不能用有限次加减乘除和开各次方等代数运算术出来的数,就是所谓“超越数”。中国在两汉之前,一般采用的圆周率是“周三径一”,也就是л=3。很明显,这个数值非常粗糙,用它进行计算会造成很大的误差。随着生产和科学的发展,“周三径一”就越来越不能满足精确计算的要求。因此,人们开始探索比较精确的圆周率。例如,据公元一世纪初制造的律嘉量斜(一种圆柱形标准量器)推算,它所取的圆周率是3.1547。公元二世纪初,东汉天文学家张衡在《灵宪》中取用≈3.1466,又在球体积公式中取用≈3.1622。三国时期吴人王蕃(228—266)在浑仪论说中取≈3.1556。上述这些圆周率近似值,比起古率“周三径一”,精确度有所提高,其中圆周率值还是世界上最早的记录。但是这些数值大多是经验结果,还缺乏坚实的理论基础,因此,研究计算圆周率的科学方法仍然是十分重要的工作。魏晋之际的杰出数学家刘徽,在计算圆周率方商,作出了非常突出的贡献。他在为古代数学名著《九章算术》作注的时候,正确地指出,“周三径一”不是圆周率值,实际上是圆内接正六边形周长和直径的比值。用古法计算圆面积的结果,不是圆面积,而是圆内接正十二边形面积。经过深入研究,刘徽发现圆内接正多边形边数无限增加的时候,多边形周长无限逼近圆周长,从而创立割圆术,为计算圆周率和圆面积建立起相当严密的理论和完善的算法。刘徽割圆术的主要内容和根据是:第一,圆内接正六边形每边的长等于半径。第二,根据勾股定理,从圆内接正л边形每边的长,可以求出圆内接正2л边形每边的长。第三,从圆内接正л边形每边的长,可以直接求出圆内接正2л边形面积。如右图,四边形oadb的面积等于半径od和正л边形边长ab乘积的一半。第四,圆面积s满足不等式s2n<s<s2n+(s2n-sn)。如右图,四边形oadb的面积和刘徽割圆术示意图。△oab的面积的差等于以ad和db为弦的两个直角三角形面积。而oadb的面积再加上这样两个直角三角形的面积,就有一部分超出圆周了。第五,刘徽指出:“割之弥细,所失弥少。割之又割,以至于不可割,则与圆周合体而无所失矣。”(《九章算术》方田章圆田术刘徽注)这就是说,圆内接正多边形的边数无限增加的时候,它的周长的极限是圆周长,它的面积的极限是圆面积。刘徽根据割圆术从圆内接正六边形算起,边数逐渐加倍,相继算出正十二边形,正二十四边形,……以至于正九十六边形每边的长,并且求出正一百九十二边形的面积。s192=。这相当于求得л=3.141024。他在实际计算中,采用了л=3.14=。不仅这样,刘徽还继续求到圆内接正三千零七十二边形的面积,验证了前面的结果,并且得出更精确的圆周率值л==3.1416。刘徽的割圆术,为圆周率研究工作奠定了坚实可靠的理论基础,在数学史上占有十分重要的地位。他所得到的结果在当时世界上也是很先进的。刘徽的计算方法只用圆内接多边形面积,而无须外切形面积,这比古希腊数学家阿基米德(前287—前212)用圆内接和外切正多边形计算,在程序上要简使得多,可以收到享半功倍的效果。同时,为解决圆周率问题,刘徽所运用的初步的极限概念和直曲转化思想,这在一千五百年前的古代,也是非常难能可贵的。祖冲之圆周率在刘徽之后,南北朝时期杰出数学家祖冲之,把圆周率推算到更加精确的程度,取得了极其光辉的成就。据《隋书·律历志》记载,祖冲之确定了圆周率的不足近似值是3.1415926,过剩近似值是3.1415927,真值在这两个近似值之间,就是3.1415926<л<3.1415927。同时,祖冲之还确定了圆周率的两个分数形式的近似值:约率л=≈3.14,密率л=≈3.1415929。祖冲之圆周率的不足近似值3.1415926和过剩近似值3.1415927,准确到小数点后七位,这在当时世界上非常先进,直到一千年以后,十五世纪阿拉伯数学家阿尔·卡西(?—1436)和十六世纪法国数学家韦达(1540—1603)才打破了祖冲之的记录。此外,在十进小数概念未充分发展以前,中国古代数学家和天文学家往往用分数表示常量的近似值。祖冲之提出的约率л=,前人已经用到过,密率л=,是他所发现的。密率是分子分母都在1000以内的分数形式的圆周率最佳近似值。用这两个近似值计算,可以满足一定精度的要求,并且非常简便。祖冲之提出的密率也是一千年后才由德国人奥托(约1550—1605)和荷兰人安托尼兹(1527—1607)重新得到。但是,在西方数学史上,л=经常称为“安托尼兹率”。我们知道,圆周率在生产实践中应用非常广泛,在科学不很发达的古代,计算圆周率是一件相当复杂和困难的工作。因此,圆周率的理论和计算在一定程度上反映了一个国家的数学水平。祖冲之算得小数点后七位准确的圆周率,正是标志着我国古代高度发展的数学水平,引起了人们的重视。自从我国古代灿烂的科学文化逐渐得到世界公认以后,一些人就建议把л=称为“祖率”,以纪念祖冲之的杰出贡献。祖冲之关于圆周率的研究工作和其他重大贡献记载在《缀术》一书中,可惜这部内容丰富的数学专著后来失传了。因此,祖冲之推算圆周率的方法现在已经无法查考。将一个圆用多边形分割,无限分割
通过“割圆术”,就是在一个圆的内部切割正多边形,通过计算正多边形的面积、周长。所取正多边形的边数越多,就越接近于正圆,计算出来的结果当然也就更加准确。应该有点类似于我们今天的微积分或者说极限吧…不断画多边形割圆术,从正方形切成正多边形,切了很多很多此算出3.1415926——3.1415927之间