分析方法 修订版

分析方法 修订版  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,自然科学,数学,数学分析,

作者: (美)斯特里沙兹著

出 版 社: 世界图书出版公司

出版时间: 2010-4-1字数:版次: 1页数: 739印刷时间: 2010-4-1开本: 24开印次: 1纸张: 胶版纸I S B N : 9787510005565包装: 平装

分析方法 修订版
内容简介

数学主要讲述思想的方法,深入理解数学比掌握一大堆的定理、定义、问题和技术显得更为重要。理论和定义共同作用,本书在介绍实分析的时候结合详尽、广泛的阐释,使得读者完全理解分析基础和方法。目次:基础;实数体系结构;实线拓扑;连续函数;微分学;积分学;序列和函数级数;超函数;欧拉空间和矩阵空间;欧拉空间上的微分计算;常微分方程;傅里叶级数;隐函数、曲线和曲面;勒贝格积分;多重积分。

读者对象:数学专业的研究生以及相关的科研人员。

分析方法 修订版
目录

Preface

1 Preliminaries

1.1 The Logic of Quantifiers

1.2 Infinite Sets

1.3 Proofs

1.4 The Rational Number System

1.5 The Axiom of Choice*

2 Construction of the Real Number System

2.1 Cauchy Sequences

2.2 The Reals as an Ordered Field

2.3 Limits and Completeness

2.4 Other Versions and Visions

2.5 Summary

3 Topology of the Real Line

3.1 The Theory of Limits

3.2 Open Sets and Closed Sets

3.3 Compact Sets

3.4 Summary

4 Continuous Functions

4.1 Concepts of Continuity

5 Differential Calculus

5.1 Concepts of the Derivative

5.2 Properties of the Derivative

5.3 The Calculus of Derivatives

5.4 Higher Derivatives and Taylor's Theorem

5.5 Summary

6 Integral Calculus

6.1 Integrals of Continuous Functions

6.2 The Riemann Integral

6.3 Improper Integrals*

6.4 Summary

7 Sequences and Series of Functions

7.1 Complex Numbers

7.2 Numerical Series and Sequences

7.3 Uniform Convergence

7.4 Power Series

7.5 Approximation by Polynomials

7.6 Equicontinuity

7.7 Summary

8 Transcendental Functions

8.1 The Exponential and Logarithm

8.2 Trigonometric Functions

8.3 Summary

9 Euclidean Space and Metric Spaces

9.1 Structures on Euclidean Space

9.2 Topology of Metric Spaces

9.3 Continuous Functions on Metric Spaces

9.4 Summary

10 Differential Calculus in Euclidean Space

10.1 The Differential

10.2 Higher Derivatives

10.3 Summary

11 Ordinary Differential Equations

11.1 Existence and Uniqueness

11.2 Other Methods of Solution*

11.3 Vector Fields and Flows*

11.4 Summary

12 Fourier Series

12.1 Origins of Fourier Series

12.2 Convergence of Fourier Series

12.3 Summary

13 Implicit Functions, Curves, and Surfaces

13.1 The Implicit Function Theorem

13.2 Curves and Surfaces

13.3 Maxima and Minima on Surfaces

13.4 Arc Length

13.5 Summary

14 The Lebesgue Integral

14.1 The Concept of Measure

14.2 Proof of Existence of Measures*

14.3 The Integral

14.4 The Lebesgue Spaces L1 and L2

14.5 Summary

15 Multiple Integrals

15.1 Interchange of Integrals

15.2 Change of Variable in Multiple Integrals

15.3 Summary

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝網路 版權所有 導航