经典巴拿赫空间Ⅰ和Ⅱ
分類: 图书,自然科学,数学,数学分析,
作者: (美)林登斯托斯著
出 版 社: 世界图书出版公司
出版时间: 2010-1-1字数:版次: 1页数: 242印刷时间: 2010-1-1开本: 24开印次: 1纸张: 胶版纸I S B N : 9787510005251包装: 平装
内容简介本书是Springer数学经典教材之一。本书延续了该系列书的一贯风格,深入但不深沉。材料新颖,许多内容是同类书籍不具备的。对于学习Banach空间结构理论的学者来说,这是一本参考价值极高的书籍;对于学习该科目的读者,本书也是同等重要。目次:schauder 基;C0空间和lp空间;对称基;O rlicz序列空间。
读者对象:数学专业高年级的学生、老师和相关的科研人员。
目录1. Schauder Bases
a. Existence of Bases and Examples
b. Schauder Bases and Duality
c. Unconditional Bases
d. Examples of Spaces Without an Unconditional Basis
e. The Approximation Property
f. Biorthogonal Systems
g. Schauder Decompositions
2. The Spaces co and lp
a. Projections in co and lp and Characterizations of these Spaces
b. Absolutely Summing Operators and Uniqueness of Unconditional Bases
c. Fredholm Operators, Strictly Singular Operators and Complemented Subspaces of lp lr
d. Subspaces of Co and lp and the Approximation Property, Complementably Universal Spaces
e. Banach Spaces Containing Iv or co
f. Extension and Lifting Properties, Automorphisms of loo, co and lx
3. Symmetric Bases
a. Properties of Symmetric Bases, Examples and Special Block Bases
b. Subspaces of Spaces with a Symmetric Basis
4. Orlicz Sequence Spaces
a. Subspaces of Orlicz Sequence Spaces which have a Symmetric Basis
b. Duality and Complemented Subspaces
c. Examples of Orlicz Sequence Spaces.
d. Modular Sequence Spaces and Subspaces of Ip lr
e. Lorentz Sequence Spaces
References
Subject Index