分享
 
 
 

(长距离的相互作用, 随机,及分数维动力学)(国内英文版)Longrange Interactions, Stochasticity and Fractional Dynamics

(长距离的相互作用, 随机,及分数维动力学)(国内英文版)Longrange Interactions, Stochasticity and Fractional Dynamics  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,自然科学,数学,概率论与数理统计,

作者: 罗朝俊,(墨)阿弗莱诺维奇编

出 版 社: 高等教育出版社

出版时间: 2010-6-1字数: 360000版次: 1页数: 308印刷时间: 2010-6-1开本: 16开印次: 1纸张: 胶版纸I S B N : 9787040291889包装: 精装

(长距离的相互作用, 随机,及分数维动力学)(国内英文版)Longrange Interactions, Stochasticity and Fractional Dynamics
内容简介

In memory of Dr. George Zaslavsky, Long-range Interactions, Stochasticity and Fractional Dynamics covers'the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed.

The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering.

(长距离的相互作用, 随机,及分数维动力学)(国内英文版)Longrange Interactions, Stochasticity and Fractional Dynamics
目录

1 Fractional Zaslavsky and Henon Discrete Maps

Vasily E. Tarasov

1.1 Introduction

1.2 Fractional derivatives

1.2.1 Fractional Riemann-Liouville derivatives

1.2.2 Fractional Caputo derivatives

1.2.3 Fractional Liouville derivatives

1.2.4 Interpretation of equations with fractional derivatives.

1.2.5 Discrete maps with memory

1.3 Fractional Zaslavsky maps

1.3.1 Discrete Chirikov and Zaslavsky maps

1.3.2 Fractional universal and Zaslavsky map

1.3.3 Kicked damped rotator map

1.3.4 Fractional Zaslavsky map from fractional differential equations

1.4 Fractional H6non map

1.4.1 Henon map

1.4.2 Fractional Henon map

1.5 Fractional derivative in the kicked term and Zaslavsky map

1.5.1 Fractional equation and discrete map

1.5.2 Examples

1.6 Fractional derivative in the kicked damped term and generalizations of Zaslavsky and Henon maps

1.6.1 Fractional equation and discrete map

1.6.2 Fractional Zaslavsky and Henon maps

1.7 Conclusion

References

2 Self-similarity, Stochasticity and Fractionality

Vladimir V Uchaikin

2.1 Introduction

2.1.1 Ten years ago

2.1.2 Two kinds of motion

2.1.3 Dynamic self-similarity

2.1.4 Stochastic self-similarity

2.1.5 Self-similarity and stationarity

2.2 From Brownian motion to Levy motion

2.2.1 Brownian motion

2.2.2 Self-similar Brownian motion in nonstationary nonhomogeneous environment

2.2.3 Stable laws

2.2.4 Discrete time Levy motion

2.2.5 Continuous time Levy motion

2.2.6 Fractional equations for continuous time Levy motion

2.3 Fractional Brownian motion

2.3.1 Differential Brownian motion process

2.3.2 Integral Brownian motion process

2.3.3 Fractional Brownian motion

2.3.4 Fractional Gaussian noises

2.3.5 Barnes and Allan model

2.3.6 Fractional Levy motion

2.4 Fractional Poisson motion

2.4.1 Renewal processes

2.4.2 Self-similar renewal processes

2.4.3 Three forms of fractal dust generator

2.4.4 nth arrival time distribution

2.4.5 Fractional Poisson distribution

2.5 Fractional compound Poisson process

2.5.1 Compound Poisson process

2.5.2 Levy-Poisson motion

2.5.3 Fractional compound Poisson motion

2.5.4 A link between solutions

2.5.5 Fractional generalization of the Levy motion

Acknowledgments

Appendix. Fractional operators

References

3 Long-range Interactions and Diluted Networks

Antonia Ciani, Duccio Fanelli and Stefano Ruffo

3.1 Long-range interactions

3.1.1 Lack of additivity

3.1.2 Equilibrium anomalies: Ensemble inequivalence, negative specific heat and temperature jumps

3.1.3 Non-equilibrium dynamical properties

3.1.4 Quasi Stationary States

3.1.5 Physical examples

3.1.6 General remarks and outlook

3.2 Hamiltonian Mean Field model: equilibrium and out-of- equilibrium features

3.2.1 The model

3.2.2 Equilibrium statistical mechanics

3.2.3 On the emergence of Quasi Stationary States: Non-

equilibrium dynamics

3.3 Introducing dilution in the Hamiltonian Mean Field model

3.3.1 Hamiltonian Mean Field model on a diluted network

3.3.2 On equilibrium solution of diluted Hamiltonian Mean Field

3.3.3 On Quasi Stationary States in presence of dilution

3.3.4 Phase transition

3.4 Conclusions

Acknowledgments

References

4 Metastability and Transients in Brain Dynamics: Problems and Rigorous Results

Valentin S. Afraimovich, Mehmet K. Muezzinoglu and

Mikhail I. Rabinovich

4.1 Introduction: what we discuss and why now

4.1.1 Dynamical modeling of cognition

4.1.2 Brain imaging

4.1.3 Dynamics of emotions

4.2 Mental modes

4.2.1 State space

4.2.2 Functional networks

4.2.3 Emotion-cognition tandem

4.2.4 Dynamical model of consciousness

4.3 Competition--robustness and sensitivity

4.3.1 Transients versus attractors in brain

4.3.2 Cognitive variables

4.3.3 Emotional variables

4.3.4 Metastability and dynamical principles

4.3.5 Winnerless competition--structural stability of transients

4.3.6 Examples: competitive dynamics in sensory systems

4.3.7 Stable heteroclinic channels

4.4 Basic ecological model

4.4.1 The Lotka-Volterra system

4.4.2 Stress and hysteresis

4.4.3 Mood and cognition

4.4.4 Intermittent heteroclinic channel

4.5 Conclusion

Acknowledgments

Appendix 1

Appendix 2

References

5 Dynamics of Soliton Chains: From Simple to Complex and Chaotic Motions

Konstantin A. Gorshkov, Lev A. Ostrovsky and Yury A. Stepanyants

5.1 Introduction

5.2 Stable soliton lattices and a hierarchy of envelope solitons

5.3 Chains of solitons within the framework of the Gardner model

5.4 Unstable soliton lattices and stochastisation

5.5 Soliton stochastisation and strong wave turbulence in a resonator with external sinusoidal pumping

5.6 Chains of two-dimensional solitons in positive-dispersion media

5.7 Conclusion

Few words in memory of George M. Zaslavsky

References

6 What is Control of Turbulence in Crossed Fields?-Don't Even Think of Eliminating All Vortexes!

Dimitri Volchenkov

6.1 Introduction

6.2 Stochastic theory of turbulence in crossed fields: vortexes of all sizes die out, but one

6.2.1 The method of renormalization group

6.2.2 Phenomenology of fully developed isotropic turbulence

6.2.3 Quantum field theory formulation of stochastic Navier-Stokes turbulence

6.2.4 Analytical properties of Feynman diagrams

6.2.5 Ultraviolet renormalization and RG-equations

6.2.6 What do the RG representations sum?

6.2.7 Stochastic magnetic hydrodynamics

6.2.8 Renormalization group in magnetic hydrodynamics

6.2.9 Critical dimensions in magnetic hydrodynamics

6.2.10 Critical dimensions of composite operators in magnetic hydrodynamics

6.2.11 Operators of the canonical dimension d = 2

6.2.12 Vector operators of the canonical dimension d = 3

6.2.13 Instability in magnetic hydrodynamics

6.2.14 Long life to eddies of a preferable size

6.3 In search of lost stability

6.3.1 Phenomenology of long-range turbulent transport in the scrape-off layer (SOL) of thermonuclear reactors

6.3.2 Stochastic models of turbulent transport in cross-field systems

6.3.3 Iterative solutions in crossed fields

6.3.4 Functional integral formulation of cross-field turbulent transport

6.3.5 Large-scale instability of iterative solutions

6.3.6 Turbulence stabilization by the poloidal electric drift

6.3.7 Qualitative discrete time model of anomalous transport in the SOL

6.4 Conclusion

References

7 Entropy and Transport in Billiards

M. Courbage and S.M. Saberi Fathi

7.1 Introduction

7.2 Entropy

7.2.1 Entropy in the Lorentz gas

7.2.2 Some dynamical properties of the barrier billiard model

7.3 Transport

7.3.1 Transport in Lorentz gas

7.3.2 Transport in the barrier billiard

7.4 Concluding remarks

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有