高等统计物理
分類: 图书,自然科学,物理学,理论物理学,
作者: 戴显熹编著
出 版 社: 复旦大学出版社
出版时间: 2007-11-1字数: 380000版次: 1页数: 332印刷时间: 2007/11/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9787309054880包装: 平装作者简介
戴显熹,1938年5月生于温州。1961年7月毕业于复旦大学物理系。1985年起任复旦大学物理系教授,1986年起任博士生导师。长期从事量子统计和理论物理方法研究,发表学术论文100多篇。
自1978年以来,从事研究生的量子统计与高等统计课程教学,以及本科生的电动力学、量子力学、数理方法、超导物理、理论物理方法等课程的教学。曾获得杨振宁教授授予的Glorious Sun奖金,曾以物理学中奇性问题研究获教育部授予的科学进步奖(二等)等。1980年来应邀访问过美国的休斯顿大学、纽约州立大学理论物理(杨振宁)研究所、德克萨斯超导中心、杨伯翰大学等,曾任杨伯翰大学客座教授。在量子统计、物理学中奇性问题、一些逆问题的严格解及其统一理论和渐近行为控制理论等方面作过较为系统的研究,首次由一材料的比热实际数据中反演出声子谱。
目录
Chapter1 Fundamental Principles
1.1 Introduction:The Characters of Thermodynamics and Statistical Physics and Their Relationship
1.2 Basic Thermodynamic Identities
1.3 Fundamental Principles and Conclusions of Classical Statistics
1.3.1 Microscopic and Macroscopic Descriptions,Statistical Distribution Functions
1.3.2 Liouville Theorem
1.3.3 Statistical Independence
1.3.4 Microscopical Canonical,Canonical and Grand CanonicalEnsembles
1.4 Boltzmann Gas
1.5 Density Matrix
1.5.1 DensityMatrix
1.5.2 Some General Properties of the Density Matrix
1.6 Liouville Theorem in Quantum Statistics
1.7 Canonical Ensemble
1.8 Grand Canonical Ensemble
1.8.1 Fundamental Expression of the Grand Canonical Ensemble
1.8.2 Derivation of the Fundamental Thermodynamic Identity
1.9 Probability Distribution and Slater Sum
1.9.1 Meaning of the Diagonal Elements of the Density Matrix
1.9.2 Slater Summation
1.9.3 Example:Probability of the Harmonic Ensemble
1.10 Theory of the Reduced Density Matrix
Chapter2 The Perfect Gas in Quantum Statistics
2.1 Indistinguishability Principle for Identical Particles
2.2 Bose Distribution and Fermi Distribution
2.2.1 Perfect Gases in Quantum Statistics
2.2.2 Bose Distribution
2.2.3 Fermi Distribution
2.2.4 Comparison of Three Distributions;Gibbs Paradox Again
2.3 Density of States,Chemical Potential and Equation of State
2.3.1 Density of States
2.3.2 Virial Equation for Quantum Ideal Gases
2.4 Black-body Radiation
2.4.1 Thermodynamic Quantities for the Black-body Radiation Field
2.4.2 Exitance and Variety of Displacement Laws
2.4.3 Waveband Radiant Exitance and Waveband Photon Exitance
2.5 Bose-Einstein Condensation in Bulk
2.5.1 Bose Condensation,Dynamical Quantities with Temperature Lower Than theλPoint
2.5.2 Discontinuity of the Derivatives of Specific Heat and λPhenomena
2.5.3 Two-Fluid Theory
2.5.4 2-D Case
2.6 Degenerate Fermi Gases and Ferm Sphere
2.6.1 Properties of Fermi Gases at Absolute Zero
2.6.2 Specific Heat of Free Electron Gases
2.6.3 State Equation,Heat Capacity at Constant Pressure, and Heavy Fermions
2.7 Fermi Integrals and their Low Temperature Expansion
2.8 Magnetism of Fermi Gases
2.8.1 Spin Magnetism:Paramagnetism
2.8.2 Energy Spectra and Stationary States of Electrons in a Homogeneous Magnetic Field
2.8.3 Diamagnetism of Orbital Motion of Free Electrons
2.9 Peierls Perturbation Expansion of Free Energy
2.9.1 Classical Case
2.9.2 Quantum Case
2.9.3 Expansion of Free Energy of an Ideal Gas in an External Field
2.10 Appendix
Chapter3 Second Quantization and Model Hamiltonians
3.1 Necessity of Second Quantization
3.2 Second Quantization for Bose System
3.3 Second QuantizationFermi System
3.4 Some Conservation Laws
3.5 Some Model Hamiltonians
3.6 Electron Gases with Coulomb Interaction
3.6.1 Completely Ionized Gases—the High Temperature Plasma
3.6.2 The Degenerate Electron Gas with Coulomb Interaction(Metal Plasma)
3.7 Anderson Model
Chapter4 Least Action Principle,Field Quantization and the Electron-Phonon System 4.1 Classical Description of Lattice Vibrations
4.2 Continuous Media Model of Lattice Vibration(Classical)
4.3 The Least Action Principle,Euler-Lagrange Equation and Hamilton Equation
4.4 Lagrangian and Hamiltonian of Continuous Media
4.5 Quantization of the Lattice Vibration Field
4.6 Debye Theory of Specific Heat of Solids
4.7 The Electron-Phonon System and the Frohlich Hamiltonian
Chapter5 Bose-Einste in Condensation
5.1 Spatial andMomentum Distributions of Bose-Einstein Condensation in Harmonic Traps and Bloch Summation
5.1.1 Introduction
5.1.2 Generalized Expression for Particle Density
5.1.3 Distributions for Ideal Systems
5.1.4 New Expression with Clear Physical Picture
5.1.5 Momentum Distributions
5.1.6 Results of Numerical Calculations
5.1.7 Discussion and Concluding Remarks
5.1.8 Momentum Distribution of BEC
5.2 BEC in Confined Geometry and Thermodynam icMapping
5.2.1 Introduction
5.2.2 Confinement Effects
5.2.3 Thermodynamic Mapping
5.2.4 Mapping Relation for Confined BEC
5.2.5 Determination of the Critical Temperature
5.2.6 Discussion
Chapter6 Some Inverse Problems in Quantum Statistics
6.1 Introduction
6.2 Specific Heat-Phonon Spectrum Inversion
6.2.1 Technique for Eliminating Divergences
6.2.2 Unique Existence Theorem and Exact SPIE Solution
6.2.3 Summary
6.3 Concrete Realization of Inversion
6.3.1 The Specific Heat-Phonon Spectrum Inversion Problem
6.3.2 Results and Concluding Remarks
6.4 Mobius Inversion Formula
6.4.1 RiemannζFunction and Mobius Function
6.4.2 Mobius Inversion Formula
6.4.3 The Modified Mobius Inversion Formula
6.4.4 Applications in Physics
6.5 Unification of the Theories
6.5.1 Introduction
6.5.2 Deriving Chen's Formula from Dai's Exact Solution
6.5.3 Concluding Remarks
6.6 Appendix
Chapter7 An Introduction to Theory of Green's Functions
7.1 Temperature-Time Green's Functions
7.1.1 Definition of Temperature-Time Green's Functions
7.1.2 The Equation of Motion of Double-Time Green's Functions
7.1.3 Time Correlation Functions
7.2 Spectral Theorem
7.2.1 Spectral Representation of Time Correlation Functions
7.2.2 Spectral Representations of Retarded and Advanced Green's Functions
7.2.3 Spectral Representation of Causal Green's Functions
7.3 Example:Ideal Quantum Gases
7.4 Theory of Superconductivity with Double-Time Green's Functions
7.5 Higher-Order Spectral Theorem,Sum Rules and Uniqueness
Chapter8 A Unified Diagonalization Theorem for Quadratic Hamiltonian
8.1 A Model Hamiltonian
8.2 Diagonalization Theorem for Fermi Quadratic Forms
8.3 Conclusion:A Unified Diagonalization Theorem
Chapter9 Functional Integral Approach:A Third Formulation of Quantum Statistical Mechanics
9.1 Introduction
9.1.1 Hubbard's Method
9.1.2 Difficulties
9.2 An Operator Identity
9.3 Functional Integral Formulation of Quantum Statistical Mechanics
9.4 Reality and Method of Steepest Descents
9.5 Discussion and Concluding Remarks
9.6 Some Recent Developments
9.7 Application:An Exact Solution
References
Index