荧光分析原理(影印)

荧光分析原理(影印)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,自然科学,化学,分析化学,

作者: (美)拉科维兹 编著

出 版 社: 科学出版社

出版时间: 2008-3-1字数: 1200000版次: 1页数: 954印刷时间: 2008/03/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9787030211880包装: 精装编辑推荐

《荧光分析法原理(影印版)》第3版在前几版基础上修订而成。第三版保持了其侧重于基本概念的优点,更新了最新文献成果,增加了新的章节。主要内容包括:荧光仪器,荧光闭,荧光寿命,溶剂和环境效应,猝灭及其机理与动力学,各向异性,能量传输,蛋白质荧光,多光子激发与显微镜,传感器,DNA技术,单分子检测,荧光相关光谱,新型探针和辐射衰变工程等。

内容简介

本书在广受欢迎的前几版基础上修订而成。第三版保持了其侧重于基本概念的优点,更新了最新文献成果,增加了新的章节。主要内容包括:荧光仪器,荧光闭,荧光寿命,溶剂和环境效应,猝灭及其机理与动力学,各向异性,能量传输,蛋白质荧光,多光子激发与显微镜,传感器,DNA技术,单分子检测,荧光相关光谱,新型探针和辐射衰变工程等。

本书可供分析化学、生物物理、生物化学、生物工程、生物学和医学等专业高年级本科生、研究生、科研人员参考。

目录

1 Introduction to Fluorescence

1.1 Phenomena of Fluorescence

1.2 Jablonski Diagram

1.3 Characteristics of Fluorescence Emission

1.3.1 The Stokes Shift

1.3.2 Emission Spectra Are Typically Independent of the Excitation Wavelength

1.3.3 Exceptions to the Mirror-Image Rule

1.4 Fluorescence Lifetimes and Quantum Yields

1.4.1 Fluorescence Quenching

1.4.2 Timescale of Molecular Processes in Solution

1.5 Fluorescence Anisotropy

1.6 Resonance Energy Transfer

1.7 Steady-State and Time-Resolved Fluorescence

1.7.1 Why Time-Resolved Measurements?

1.8 Biochemical Fluorophores

1.8.1 Fluorescent Indicators

1.9 Molecular Information from Fluorescence

1.9.1 Emission Spectra and the Stokes Shift

1.9.2 Quenching of Fluorescence

1.9.3 Fluorescence Polarization or Anisotropy

1.9.4 Resonance Energy Transfer

1.10 Biochemical Examples of Basic Phenomena

1.11 New Fluorescence Technologies

1.11.1 Multiphoton Excitation

1.11.2 Fluorescence Correlation Spectroscopy

1.11.3 Single-Molecule Detection

1.12 Overview of Fluorescence Spectroscopy

References

Problems

2 Instrumentation for Fluorescence Spectroscopy

2.1 Spectrofluorometers

2.1.1 Spectrofluorometers for Spectroscopy Research

2.1.2 Spectrofluorometers for High Throughput

2.1.3 An Ideal Spectrofluorometer

2.1.4 Distortions in Excitation and Emission Spectra

2.2 Light Sources

2.2.1 Arc Lamps and Incandescent Xenon Lamps

2.2.2 Pulsed Xenon Lamps

2.2.3 High-Pressure Mercury (Hg) Lamps

2.2.4 Xe-Hg Arc Lamps

2.2.5 Quartz-Tungsten Halogen (QTH) Lamps

2.2.6 Low-Pressure Hg and Hg-Ar Lamps

2.2.7 LED Light Sources

2.2.8 Laser Diodes

2.3 Monochromators

2.3.1 Wavelength Resolution and Emission Spectra

2.3.2 Polarization Characteristics of Monochromators

2.3.3 Stray Light in Monochromators

2.3.4 Second-Order Transmission in Monochromators

2.3.5 Calibration of Monochromators

2.4 Optical Filters

2.4.1 Colored Filters

2.4.2 Thin-Film Filters

2.4.3 Filter Combinations

2.4.4 Neutral-Density Filters

2.4.5 Filters for Fluorescence Microscopy

2.5 Optical Filters and Signal Purity

2.5.1 Emission Spectra Taken through Filters

2.6 Photomultiplier Tubes

2.6.1 Spectral Response of PMTs

2.6.2 PMT Designs and Dynode Chains

2.6.3 Time Response of Photomultiplier Tubes

2.6.4 Photon Counting versus Analog Detection of Huorescence

2.6.5 Symptoms of PMT Failure

2.6.6 CCD Detectors

2.7 Polarizers

2.8 Corrected Excitation Spectra

2.8.1 Corrected Excitation Spectra Using a Quantum Counter

2.9 Corrected Emission Spectra

2.9.1 Comparison with Known Emission Spectra

2.9.2 Corrections Using a Standard Lamp

2.9.3 Correction Factors Using a Quantum Counter and Scatterer

2.9.4 Conversion between Wavelength and Wavenumber

2.10 Quantum Yield Standards

2.11 Effects of Sample Geometry

2.12 Common Errors in Sample Preparation

2.13 Absorption of Light and Deviation from the Beer-Lambert Law

2.13.1 Deviations from Beer's Law

2.14 Conclusions

References

Problems

3 Fluorophores

3.1 Intrinsic or Natural Fhiorophores

3.1.1 Fluorescence Enzyme Cofactors

3.1.2 Binding of NADH to a Protein

3.2 Exlrinsie Fluorophores

3.2.1 Protein-Labeling Reagents

3.2.2 Role of the Stokes Shift in Protein Labeling

3.2.3 Photostability of Fluorophores

3.2.4 Non-Covalent protein-Labeling Probes

3.2.5 Membrane probes

3.2.6 Membrane Potential Probes

3.3 Red and Near-Infrared (NIR) Dyes

3.4 DNA Probes

3.4.1 DNA Base Analogues

3.5 Chemical Sensing Probes

3.6 Special Probes

3.6.1 Fluorogenie Probes

3.6.2 Structural Analogues of Biomolecules

3.6.3 Viscosity Probes

3.7 Green Fluorescent Proteins

3.8 Other Fluorescent Proteins

3.8.1 Phytofluors: A New Class of Fluorescent Probes

3.8.2 Phycobiliproteins

3.8.3 Specific Labeling of Intraeelhilar Proteins

3.9 Long-Lifetime probes

3.9.1 Lanthanides

3.9.2 Transition Metal-Ligand Complexes

3.10 Proteins as Sensors

3.11 Conclusion

References

problems

4 Time-Domain Lifetime Measurements

4.1 Overview of Time-Domain and Frequency-

Domain Measurements

4.1.1 Meaning of the Lifetime or Decay Time

4.1.2 Phase and Modulation Lifetimes

4.1.3 Examples of Time-Domain and Frequency-Domain Lifetimes

4.2 Biopolymers Display Multi-Exponential or Heterogeneous Decays

4.2.1 Resolution of Multi-Exponential Decays Is Difficult

4.3 Time-Correlated Single-Photon Counting

4.3.1 Principles of TCSPC

4.3.2 Example of TCSPC Data

4.3.3 Convolution Integral

4.4 Light Sources for TCSPC

4.4.l Laser Diodes and Light-Emitting Diodes

4.4.2 Femtosecond Titanium Sapphire Lasers

4.4.3 Picosecond Dye Lasers

4.4.4 Flashlamps

4.4.5 Synchrotron Radiation

4.5 Electronics for TCSPC

4.5.1 Constant Fraction Discriminators

4.5.2 Amplifiers

4.5.3 Time-to-Amplitude Converter (TAC) and Analyte-to-Digital Converter (ADC)

4.5.4 Multichannel Analyzer

4.5.5 Delay Lines

4.5.6 Pulse Pile-Up

4.6 Detectors for TCSPC

4.6.1 Microchannel Plate PMTs

4.6.2 Dynode Chain PMTs

4.6.3 Compact PMTs

4.6.4 Photodiodes as Detectors

4.6.5 Color Effects in Detectors

4.6.6 Timing Effects of Monochromators

4.7 Multi-Detector and Multidimensional TCSPC

4.7.1 Multidimensional TCSPC and DNA Sequencing

4.7.2 Dead Times Repetition Rates and Photon Counting Rates

4.8 Alternative Methods for Time-Resolved

Measurements

4.8.1 Transient Recording

4.8.2 Streak Cameras

4.8.3 Upconversion Methods

4.8.4 Microsecond Luminescence Decays

4.9 Data Analysis: Nonlinear Least Squares

4.9.1 Assumptions of Nonlinear Least Squares

4.9.2 Overview of Least-Squares Analysis

4.9.3 Meaning of the Goodness-of-Fit

4.9.4 Autocorrelation Function

4.10 Analysis of Multi-Exponential Decays

4.10.1 p-Terphenyl and Indole: Two Widely

Spaced Lifetimes

4.10.2 Comparison of XR2 Values: F Statistic

4.10.3 Parameter Uncertainty: Confidence

Intervals

4.10.4 Effect of the Number of Photon Counts

4.10.5 Anthranilic Acid and 2-Aminopurine:

Two Closely Spaced Lifetimes

……

5 Frequency-Domain Lifetime Measurements

6 Solvent and Environmental Effects

7 Dynamics of Solvent and Spectral Relaxation

8 Quenching of Fluourescence

9 Mechanisms and Dynamics of Fluorescence Quenching

10 Fluorescence Anisotropy

11 Time-Dependent Anisotropy Decays

12 Advanced Anisotropy Concepts

13 Energy Transfer

14 Time-Resolved Energy Transfer and Conformational Distributions of Biopolymers

15 Energy Transfer to Multiple Acceptors in One, Two, or Three Dimensions

16 Protein Fluorescence

17 Time-Resolved Protein Fluorescence

18 Multiphoton Excitation and microsocopy

19 Fluorescence Sensing

20 Novel Fluorophores

21 DNA Technology

22 Fluorescence-Lifetime Imaging Microscopy

23 Single-Molecule Detection

24 Fluorescence Correlation Spectroscopy

25 Radiative Decay Engineering: Metal-Enhanced Fluorescence

26 Radiative Decay Engineering: Surface Plasmon-Coupled Emission

Appendix I. Corrected Emission Spectra

Appendix II. Fluorescent Lifetime Standards

Appendix III. Additional Reading

Answers to Problems

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝網路 版權所有 導航