黎曼几何

黎曼几何  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,自然科学,数学,几何与拓扑,

作者: (葡)卡莫著

出 版 社: 世界图书出版公司

出版时间: 2008-5-1字数:版次: 1页数: 300印刷时间: 2008/05/01开本: 24开印次: 1纸张: 胶版纸I S B N : 9787506292184包装: 平装内容简介

The object of this book is to familiarize the reader with the basic language of and some fundamental theorems in Riemannian Geometry。To avoid referring to previous knowledge of differentiable manifolds, we include Chapter 0, which contains those concepts and results on differentiable manifolds which are used in an essential way in the rest of the book。

The first four chapters of the book present the basic concepts of Riemannian Geometry (Riemannian metrics, Riemannian connections, geodesics and curvature)。A good part of the study of Riemannian Geometry consists of understanding the relationship between geodesics and curvature。Jacobi fields, an essential tool for this understanding, are introduced in Chapter 5。In Chapter 6 we introduce the second fundamental form associated with an isometric immersion, and prove a generalization of the Theorem Egregium of Gauss。This allows us to relate the notion of curvature in Riemannian manifolds to the classical concept of Gaussian curvature for surfaces。

目录

Preface to the first edition

Preface to the second edition

Preface to the English edition

How to use this book

CHAPTER 0-DIFFERENTIABLE MANIFOLDS

1. Introduction

2. Differentiable manifolds;tangent space

3. Immersions and embeddings;examples

4. Other examples of manifolds,Orientation

5. Vector fields; brackets,Topology of manifolds

CHAPTER 1-RIEMANNIAN METRICS

1. Introduction

2. Riemannian Metrics

CHAPTER 2-AFFINE CONNECTIONS;RIEMANNIAN CONNECTIONS

1. Introduction

2. Affine connections

3. Riemannian connections

CHAPTER 3-GEODESICS;CONVEX NEIGHBORHOODS

1.Introduction

2.The geodesic flow

3.Minimizing properties ofgeodesics

4.Convex neighborhoods

CHAPTER 4-CURVATURE

1.Introduction

2.Curvature

3.Sectional curvature

4.Ricci curvature and 8calar curvature

5.Tensors 0n Riemannian manifoids

CHAPTER 5-JACOBI FIELDS

1.Introduction

2.The Jacobi equation

3.Conjugate points

CHAPTER 6-ISOMETRIC IMMERSl0NS

1.Introduction.

2.The second fundamental form

3.The fundarnental equations

CHAPTER 7-COMPLETE MANIFoLDS;HOPF-RINOW AND HADAMARD THEOREMS

1.Introduction.

2.Complete manifolds;Hopf-Rinow Theorem.

3.The Theorem of Hadamazd.

CHAPTER 8-SPACES 0F CONSTANT CURVATURE

1.Introduction

2.Theorem of Cartan on the determination ofthe metric by mebns of thecurvature.

3.Hyperbolic space

4.Space forms

5.Isometries ofthe hyperbolic space;Theorem ofLiouville

CHAPTER 9一VARIATl0NS 0F ENERGY

1.Introduction.

2.Formulas for the first and second variations of enezgy

3.The theorems of Bonnet—Myers and of Synge-WeipJtein

CHAPTER 10-THE RAUCH COMPARISON THEOREM

1.Introduction

2.Ttle Theorem of Rauch.

3.Applications of the Index Lemma to immersions

4.Focal points and an extension of Rauch’s Theorem

CHAPTER 11—THE MORSE lNDEX THEOREM

1.Introduction

2.The Index Theorem

CHAPTER 12-THE FUNDAMENTAL GROUP OF MANIFOLDS 0F NEGATIVE CURVATURE

1.Introduction

2.Existence of closed geodesics

CHAPTER 13-THE SPHERE THEOREM

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝網路 版權所有 導航