分享
 
 
 

Prediction, Learning, and Games预报,学习与游戏程序

Prediction, Learning, and Games预报,学习与游戏程序  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,计算机 Computers & Internet ,

作者: Nicolo Cesa-Bianchi等著

出 版 社:

出版时间: 2006-3-1字数:版次: 1页数: 394印刷时间: 2006/03/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780521841085包装: 精装编辑推荐

作者简介:

Nicolò Cesa-Bianchi is Professor of Computer Science at the University of Milan, Italy. His research interests include learning theory, pattern analysis, and worst-case analysis of algorithms. He is action editor of The Machine Learning Journal. Gábor Lugosi has been working on various problems in pattern classification, nonparametric statistics, statistical learning theory, game theory, probability, and information theory. He is co-author of the monographs, A Probabilistic Theory of Pattern Recognition and Combinatorial Methods of Density Estimation. He has been an associate editor of various journals including The IEEE Transactions of Information Theory, Test, ESAIM: Probability and Statistics and Statistics and Decisions.

内容简介

This important new text and reference for researchers and students in machine learning, game theory, statistics and information theory offers the first comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections. Old and new forecasting methods are described in a mathematically precise way in order to characterize their theoretical limitations and possibilities.

目录

Preface

1 Introduction

1.1 Prediction

1.2 Learning

1.3 Games

1.4 A Gentle Start

1.5 A Note to the Reader

2 Prediction with Expert Advice

2.1 Weighted Average Prediction

2.2 An Optimal Bound

2.3 Bounds That Hold Uniformly over Time

2.4 An Improvement for Small Losses

2.5 Forecasters Using the Gradient of the Loss

2.6 Scaled Losses and Signed Games

2.7 The Multilinear Forecaster

2.8 The Exponential Forecaster for Signed Games

2.9 Simulatable Experts

2.10 Minimax Regret

2.11 Discounted Regret

2.12 Bibliographic Remarks

2.13 Exercises

3 Tight Bounds for Specific Losses

3.1 Introduction

3.2 Follow the Best Expert

3.3 Exp-concave Loss Functions

3.4 The Greedy Forecaster

3.5 The Aggregating Forecaster

3.6 Mixability for Certain Losses

3.7 General Lower Bounds

3.8 Bibliographic Remarks

3.9 Exercises

4 Randomized Prediction

4.1 Introduction

4.2 Weighted Average Forecasters

4.3 Follow the Perturbed Leader

4.4 Internal Regret

4.5 Calibration

4.6 Generalized Regret

4.7 Calibration with Checking Rules

4.8 Bibliographic Remarks

4.9 Exercises

5 Efficient Forecasters for Large Classes of Experts

5.1 Introduction

5.2 Tracking the Best Expert

5.3 Tree Experts

5.4 The Shortest Path Problem

5.5 Tracking the Best of Many Actions

5.6 Bibliographic Remarks

5.7 Exercises

6 Prediction with Limited Feedback

6.1 Introduction

6.2 Label Efficient Prediction

6.3 Lower Bounds

6.4 Partial Monitoring

6.5 A General Forecaster for Partial Monitoring

6.6 Hannah Consistency and Partial Monitoring

6.7 Multi-armed Bandit Problems

6.8 An Improved Bandit Strategy

6.9 Lower Bounds for the Bandit Problem

6.10 How to Select the Best Action

6.11 Bibliographic Remarks

6.12 Exercises

7 Prediction and Playing Games

7.1 Games and Equilibria

7.2 Minimax Theorems

7.3 Repeated Two-Player Zero-Sum Games

7.4 Correlated Equilibrium and Internal Regret

7.5 Unknown Games: Game-Theoretic Bandits

7.6 Calibration and Correlated Equilibrium

7.7 Blackwell's Approachability Theorem

7.8 Potential-based Approachability

7.9 Convergence to Nash Equilibria

7.10 Convergence in Unknown Games

7.11 Playing Against Opponents That React

7.12 Bibliographic Remarks

7.13 Exercises

8Absolute loss

9Logarithmic loss

10Sequential investment

11Linear pattern recognition

12Linear classification

Appendix

References

Author Index

Subject Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有