The Generic Chaining: Upper and Lower Bounds of Stochastic Processes总链接:随机过程的上下界

The Generic Chaining: Upper and Lower Bounds of Stochastic Processes总链接:随机过程的上下界  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Michel Talagrand著

出 版 社: 北京燕山出版社

出版时间: 2005-4-1字数:版次: 1页数: 222印刷时间: 2005/04/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9783540245186包装: 精装内容简介

The fundamental question of characterizing continuity and boundedness of Gaussian processes goes back to Kolmogorov. After essential contributions by R. Dudley and X. Fernique, it was solved by the author in 1985. This advance was followed by a great improvement of our understanding of the boundedness of other fundamental classes of processes (empirical processes, infinitely divisible processes, etc.) This challenging body of work has now been considerably simplified through the notion of "generic chaining", a completely natural variation on the ideas of Kolmogorov. The entirely new presentation adopted here takes the reader from the first principles to the edge of current knowledge, and to the wonderful open problems that remain in this domain.

目录

Introduction

1 Overview and Basic Facts

1.1 Overview of the Book

1.2 The Generic Chaining

1.3 A Partitioning Scheme

1.4 Notes and Comments

2 Gaussian Processes and Related Structures

2.1 Gaussian Processes and the Mysteries of Hilbert Space .

2.2 A First Look at Ellipsoids

2.3 p-stable Processes

2.4 Further Reading: Stationarity

2.5 Order 2 Gaussian Chaos

2.6 L2,L1,L~Balls

2.7 Donsker Classes

3 Matching Theorems

3.1 The Ellipsoid Theorem

3.2 Matchings

3.3 The Ajtai, Komlos, Tusnady Matching Theorem

3.4 The Leighton-Shor Grid Matching Theorem

3.5 Shor's Matching Theorem

4 The Bernoulli Conjecture

4.1 The Conjecture

4.2 Control in l∞Norm

4.3 Chopping Maps and the Weak Solution

4.4 Further Thoughts

5 Families of distances

5.1 A General Partition Scheme

5.2 The Structure of Certain Canonical Processes

5.3 Lower Bounds for Infinitely Divisible Processes

5.4 The Decomposition Theorem for Infinitely Divisible Processes

5.5 Further Thoughts

6 Applications to Banach Space Theory

6.1 Cotype of Operators from C(K)

6.2 Computing the Rademacher Cotype-2 Constant

6.3 Restriction of Operators

6.4 The A(p) Problem

6.5 Schechtman's Embedding Theorem

6.6 Further Reading

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝網路 版權所有 導航