分享
 
 
 

Financial Markets in Continuous Time连续时间中的金融市场

Financial Markets in Continuous Time连续时间中的金融市场  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,经管与理财 Business & Investing ,

作者: Rose-Anne Dana等著

出 版 社: 漓江出版社

出版时间: 2007-9-1字数:版次: 1页数: 326印刷时间: 2007/09/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9783540711490包装: 平装内容简介

In modern financial practice, asset prices are modelled by means of stochastic processes, and continuous-time stochastic calculus thus plays a central role in financial modelling. This approach has its roots in the foundational work of the Nobel laureates Black, Scholes and Merton. Asset prices are further assumed to be rationalizable, that is, determined by equality of demand and supply on some market. This approach has its roots in the foundational work on General Equilibrium of the Nobel laureates Arrow and Debreu and in the work of McKenzie. This book has four parts. The first brings together a number of results from discrete-time models. The second develops stochastic continuous-time models for the valuation of financial assets (the Black-Scholes formula and its extensions), for optimal portfolio and consumption choice, and for obtaining the yield curve and pricing interest rate products. The third part recalls some concepts and results of general equilibrium theory, and applies this in financial markets. The last part is more advanced and tackles market incompleteness and the valuation of exotic options in a complete market.

目录

1The Discrete Case

1.1 A Model with Two Dates and Two States of the World

1.1.1 The Model

1.1.2 Hedging Portfolio, Value of the Option

1.1.3 The Risk-Neutral Measure, Put Call Parity

1.1.4 No Arbitrage Opportunities

1.1.5 The Risk Attached to an Option

1.1.6 Incomplete Markets

1.2 A One-Period Model with (d + 1) Assets and k States of the

World

1.2.1 No Arbitrage Opportunities

1.2.2 Complete Markets

1.2.3 Valuation by Arbitrage in the Case of a Complete Market

1.2.4 Incomplete Markets: the Arbitrage Interval

1.3 Optimal Consumption and Portfolio Choice in a One-Agent Model

1.3.1 The Maximization Problem

1.3.2 An Equilibrium Model with a Representative Agent

1.3.3 The Von Neumann-Morgenstern Model, Risk Aversion

1.3.4 Optimal Choice in the VNM Model

1.3.5 Equilibrium Models with Complete Financial Markets

2Dynamic Models in Discrete Time

2.1 A Model with a Finite Horizon

2.2 Arbitrage with a Finite Horizon

2.2.1 Arbitrage Opportunities

2.2.2 Arbitrage and Martingales

2.3 Trees

2.4 Complete Markets with a Finite Horizon

2.4.1 Characterization

2.5 Valuation

2.5.1 The Complete Market Case

2.6 An Example

2.6.1 The Binomial Model

2.6.2 Option Valuation

2.6.3 Approaching the Black-Scholes Model

2.7 Maximization of the Final Wealth

2.8 Optimal Choice of Consumption and Portfolio

2.9 Infinite Horizon

3 The Black-Scholes Formula

3.1 Stochastic Calculus

3.1.1 Brownian Motion and the Stochastic Integral

3.1.2 It5 Processes. Girsanov's Theorem

3.1.3 It6's Lemma

3.1.4 Multidimensional Processes

3.1.5 Multidimensional ItS's Lemma

3.1.6 Examples

3.2 Arbitrage and Valuation

3.2.1 Financing Strategies

3.2.2 Arbitrage and the Martingale Measure

3.2.3 Valuation

3.3 The Black-Scholes Formula: the One-Dimensional Case

3.3.1 The Model

3.3.2 The Black-Scholes Formula

3.3.3 The Risk-Neutral Measure

3.3.4 Explicit Calculations

3.3.5 Comments on the Black-Scholes Formula

3.4 Extension of the Black-Scholes Formula

3.4.1 Financing Strategies

3.4.2 The State Variable

3.4.3 The Black-Scholes Formula

3.4.4 Special Case

3.4.5 The Risk-Neutral Measure

3.4.6 Example

3.4.7 Applications of the Black-Scholes Formula

4 Portfolios Optimizing Wealth and Consumption

4.1 The Model

4.2 Optimization

4.3 Solution in the Case of Constant Coefficients

4.3.1 Dynamic Programming

4.3.2 The Hamilton-Jacobi Bellman Equation

4.3.3 A Special Case

4.4 Admissible Strategies

……

5 THE Yield curve

6 Equilibrium of Financial markets in discrete time

7 Equilibrium of financial markets in continous time,The complete markets case

8 Incomplete markets

9 Exotic options

A Brownian motion

B Numerical methods

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有