分享
 
 
 

国外数学名著系列(续一影印版)40:模型参数估计的反问题理论与方法

国外数学名著系列(续一影印版)40:模型参数估计的反问题理论与方法  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,自然科学,数学,概率论与数理统计,

作者: (意)塔兰托拉 著

出 版 社: 科学出版社

出版时间: 2009-1-1字数: 431000版次: 1页数: 342印刷时间: 2009/01/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9787030234841包装: 精装内容简介

Prompted by recent developments in inverse theory, Inverse Problem Theory and Methods for Model Parameter Estimation is a completely rewritten version of a 1987 book by the same author. In this version there are many algorithmic details for Monte Carlo methods, leastsquares discrete problems, and least-squares problems involving functions. In addition, some notions are clarified, the role of optimization techniques is underplayed, and Monte Carlo methods are taken much more seriously. The first part of the book deals exclusively with discrete inverse problems with afinite number of parameters, while the second part of the book deals with general inverse problems. ...

目录

Preface

1 The General Discrete Inverse Problem

1.1 Model Space and Data Space

1.2 States of Information

1.3 Forward Problem

1.4 Measurements and A Priori Information

1.5 Defining the Solution of the Inverse Problem

1.6 Using the Solution of the Inverse Problem

2 Monte Carlo Methods

2.1 Introduction

2.2 The Movie Strategy for Inverse Problems

2.3 Sampling Methods

2.4 Monte Carlo Solution to Inverse Problems

2.5 Simulated Annealing

3 The Least-Squares Criterion

3.1 Preamble: The Mathematics of Linear Spaces

3.2 The Least-Squares Problem

3.3 Estimating Posterior Uncertainties

3.4 Least-Squares Gradient and Hessian

4 Least-Absolute-Values Criterion and Minimax Criterion

4.1 Introduction

4.2 Preamble:ln-Norms

4.3 The ln-Norm Problem

4.4 The l1-Norm Criterion for Inverse Problems

4.5 The ln-Norm Criterion for Inverse Problems

5 Functional Inverse Problems

5.1 Random Functions

5.2 Solution of General Inverse Problems

5.3 Introduction to Functional Least Squares

5.4 Derivative and Transpose Operators in Functional Spaces

5.5 General Least-Squares Inversion

5.6 Example: X-Ray Tomography as an Inverse Problem

5.7 Example: Travel-Time Tomography

5.8 Example: Nonlinear Inversion of Elastic Waveforms

6 Appendices

6.1 Volumetric Probability and Probability Density

6.2 Homogeneous Probability Distributions

6.3 Homogeneous Distribution for Elastic Parameters

6.4 Homogeneous Distribution for Second-Rank Tensors

6.5 Central Estimators and Estimators of Dispersion

6.6 Generalized Gaussian

6.7 Log-Normal Probability Density

6.8 Chi-Squared Probability Density

6.9 Monte Carlo Method of Numerical Integration

6.10Sequential Random Realization

6.11Cascaded Metropolis Algorithm

6.12Distance and Norm

6.13The Different Meanings of the Word Kernel

6.14Transpose and Adjoint of a Differential Operator

6.15The Bayesian Viewpoint of Backus (1970)

6.16The Method of Backus and Gilbert

6.17Disjunction and Conjunction of Probabilities

6.18Partition of Data into Subsets

6.19Marginalizing in Linear Least Squares

6.20Relative Information of Two Gaussians

6.21Convolution of Two Gaussians

6.22Gradient-Based Optimization Algorithms

6.23Elements of Linear Programming

6.24Spaces and Operators

6.25Usual Functional Spaces

6.26Maximum Entropy Probability Density

6.27Two Properties of ln-Norms

6.28Discrete Derivative Operator

6.29Lagrange Parameters

6.30Matrix Identities

6.31Inverse of a Partitioned Matrix

6.32Norm of the Generalized Gaussian

7 Problems

7.1 Estimation of the Epicentral Coordinates of a Seismic Event

7.2 Measuring the Acceleration of Gravity

7.3 Elementary Approach to Tomography

7.4 Linear Regression with Rounding Errors

7.5 Usual Least-Squares Regression

7.6 Least-Squares Regression with Uncertainties in Both Axes

7.7 Linear Regression with an Outlier

7.8 Condition Number and A Posteriori Uncertainties

7.9 Conjunction of Two Probability Distributions

7.10Adjoint of a Covariance Operator

7.11Problem 7.1 Revisited

7.12Problem 7.3 Revisited

7.13An Example of Partial Derivatives

7.14Shapes of the ln-Norm Misfit Functions

7.15Using the Simplex Method

7.16Problem 7.7 Revisited

7.17Geodetic Adjustment with Outliers

7.18Inversion of Acoustic Waveforms

7.19Using the Backus and Gilbert Method

7.20The Coefficients in the Backus and Gilbert Method

7.21The Norm Associated with the 1D Exponential Covariance

7.22The Norm Associated with the 1D Random Walk

7.23The Norm Associated with the 3D Exponential Covariance

References and References for General Reading

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有