生物技术产业化:从实验室到工厂到产品(应用生物技术大系)(Technology Transfer in Bintechnology From Lab to Industry to Production)

分類: 图书,经济,行业经济,能源化工,
品牌: (德)U.克拉格
基本信息·出版社:科学出版社
·页码:237 页
·出版日期:2008年
·ISBN:7030217322/9787030217325
·条形码:9787030217325
·包装版本:1版
·装帧:平装
·开本:16
·正文语种:中文
·丛书名:应用生物技术大系
·外文书名:Technology Transfer in Bintechnology From Lab to Industry to Production
产品信息有问题吗?请帮我们更新产品信息。
内容简介《生物技术产业化》结合生物化工领域前沿进展,涵盖了工业生物技术工程化或产业化主要单元的共性技术,展示了近年来一些取得重大进展并有重要应用前景的工业生物技术成果及发展趋势。主要内容包括微生物发酵及相关反应器开发,阐述了高压发酵中传氧、传热以及二氧化碳抑制和动力、能量成本的核算理论;从理论阐述到应用实例,展示了平行反应器系统、膨胀床吸附的生物化学工程研究技术;并进而概述了进行微生物发酵代谢流分析的方法和进展。酶催化及酶膜反应器:论述了生物学原理在不对称催化中的应用,比较了不同辅因子再生体系的优缺点,阐述了酶催化的区域选择性和立体选择性,结合Degussa开发的膜反应器概述了其研究进展及应用实例。针对工业生物技术产业下游处理,阐述了厌氧废水处理的工程问题和工艺进展,比较了不同萃取体系用于初级和次级代谢产物分离的进展和发展趋势。
《生物技术产业化》可作为分子生物学、生物工程、生物技术以及医学、药学等领域的高等院校和研究院所的教学和科研人员的参考用书。
目录
译者序
原书序
初级和次级代谢产物的提取
1引言
2两相体系
2.1溶剂萃取
2.1.1酒精
2.1.2酸
2.1.3次级代谢产物
2.2反应萃取
2.2.1抗生素
2.3解离萃取
2.4水溶液两相萃取(ATPS)
2.5超临界和近临界流体的萃取
3三相体系
3.1乳化液膜
3.2固体支撑液膜
3.3反相微胶团萃取
3.4通过在水溶液一有机溶剂界面形成富集溶质一萃取剂复合物第三相的反应萃取
4萃取技术比较
参考文献
厌氧废水处理的生化反应工程和工艺进展
1引言
2基本原理
3热力学
4动力学
5热量和质量传递
6生物量保留和循环
6.1上流式厌氧污泥床反应器
6.2固定床环流反应器
7单级和两级工艺操作的比较
8单级甲烷发酵和两级串联甲烷发酵的影响
9未来展望
参考文献
高压发酵中氧的传质、二氧化碳抑制、散热以及能量和成本效率
1引言
2理论
2.1气液传质
2.2热的产生
2.3能量效率
2.4成本效率
2.4.1反应器系统
2.4.2压缩机
2.4.3运行成本
2.4.4成本效益
2.5能耗
3材料和方法
4结果
4.1气液传质特征
4.2计算氧传质能力
4.3热的产生
4.4能量效率
4.5成本效率
4.5.1发酵罐系统
4.5.2压缩机
4.5.3运行成本
5结论
参考文献
膨胀床吸附的生物化学工程技术研究
1引言
2初级提纯
2.1膨胀床吸附的定义
2.2工艺整合和操作原理
3膨胀床吸附系统
3.1膨胀床吸附矩阵
3.2流体力学原理
3.2.1床膨胀
3.2.2膨胀床的稳定性/流体混合
3.3流体分布
3.3.1基于产生压降的流体分布
3.3.2基于圆锥形分布器的流体分布
3.3.3利用区域混合装置的流体分布
3.3.4利用旋转流体分布器的流体分布
4生物质一吸附剂间相互作用
4.1生物质与介质间相互作用的评估方法
4.2生物质一吸附剂相互作用的现象描述
5工艺开发进展
6结论
参考文献
用于生物过程开发的平行反应器系统
1引言
2平行生物反应器
2.1摇瓶
2.2振荡式孔板
2.3平行搅拌釜式反应器
2.4平行鼓泡柱
3平行补料技术
3.1早期的过程
3.2间歇补料和平行pH控制
4应用实例
4.1平行pH控制
4.2传氧
4.3功率输入
4.4过程放大和缩小
5讨论与展望
参考文献
从稳态到非稳态的代谢流分析
1引言
1.1代谢流分析
1.2非稳态条件下的实验
1.3各种非稳态
1.3.1代谢非稳态
1_3.2同位素非稳态
1.4 CLE分类
1.5近期研究进展
1.5.1实验过程
1.5.2分析过程
1.5.3计算过程
2非稳态标记实验的模拟
2.1数学建模
2.2串联方程
2.3一个简单实例
3短时标记实验
3.1标记动力学的时间常数
3.2冲洗修正
3.3对批式和补料批式过程的修正
3.4怎样使标记实验尽早停止
3.5一个更真实的系统
3.6蛋白质转换的影响
4重复取样的标记实验
4.1一种新型实验
4.2一个简单实例
5当流量变成非稳态时
5.1可能出现的问题
5.2一个具有振荡流量的例子
6结论
参考文献
代谢概览图技术应用于刺激一响应实验:机会和缺陷
1引言
2刺激一响应实验中需要的仪器和技术
2.1代谢网络刺激
2.2快速取样技术
2.3代谢终止技术
2.4代谢产物萃取
2.5胞内代谢物分析
2.6数据模型
3例子:刺激响应实验监控--不只局限于核心代谢
3.1分析方法
3.2实验设计
3.3信号过滤
3.4 E∞如菌株中生产L苯丙氨酸实验
4结论和展望
参考文献
生物学原理在不对称催化中的应用
1生物学原理
2不对称催化技术
3技术不对称催化的转化的生物学原理
3.1生物体外的生物反应过程
3.2生物体内的生物反应过程
3.3化学酶反应过程
3.4电酶反应过程
3.5化学酶
3.6反应工程
4结论
参考文献
实验室规模的辅因子再生
1引言
2利用全细胞生物催化剂再生辅因子
3利用纯酶作为生物催化剂再生辅因子
4底物偶联型的辅因子再生
5与酶偶联的辅因子再生
6电化学、化学、光化学辅酶再生
6.1电化学再生
6.2化学再生
6.3光化学再生
7反应工程
7.1辅因子的保留
7.2酶膜反应器中的辅因子再生
7.3电化学反应器中的辅因子再生
8结论
参考文献
区域及对映选择性酶促酮还原反应
1引言
2通过区域或对映体选择性还原3,5一二酮酸产生1,3一二元醇的途径
2.1工作策略
2.2区域对映选择性还原
2.3动态动力学分析
2.4 1,3一二醇的立体选择性途径
2.4.1化学方法的非对映选择性还原
2.4.2 l,3一二醇一丙酮化合物非对映异构体一区别水解
2.5氯元素的亲核替换
2.6天然产物合成应用
2.7结论与展望
3炔丙基酮的化学和对映体选择性还原:通过一个通用的手性构件
3.1工作策略
3.2芳基炔基酮的对映体选择性还原
3.3合成对映体纯度的3一丁炔一2一醇
3.4酶促还原r卤化炔丙基酮
3.5 a一卤化炔丙基醇的修饰
3.6小结和展望
4总结
参考文献
Degussa的膜反应器
1引言
2生物催化膜反应器
2.1酶膜反应器技术
2.2膜技术的特征
2.3膜反应器放大的挑战
2.4膜反应器应用酶的开发
2.5膜反应器反应动力学特征
2.6 Degussa EMR工艺
2.6.1酰化酶工艺
2.6.2集成辅因子再生脱氢酶技术
2.6.3用L精氨酸与精氨酸酶生产L-鸟氨酸
3膜反应器分离均相催化剂
3.1研究范围
3.2化学研究
3.3聚合体研究
3.4工程研究
3.5化学酶膜反应器的应用
3.5.1硼烷还原
3.5.2Juli玉Colonna环氧化
3.5.3内消旋酐的不对称开环
3.5.4转移加氢
3.5.5 Sharpless双羟基化作用
3.6结论
3.7总结和展望
参考文献
索引
……[看更多目录]
序言20世纪的一百年是人类历史上生产力飞速发展的一百年,各种新技术的发明及其广泛应用,极大地促进了生产力的发展,并带动了各个行业的进步。经过数百年的快速发展,以石油炼制为基础的现代工业体系成为国家经济发展的支柱,但由于对不可再生化石资源的过分依赖,社会经济的可持续发展正面临着能源资源短缺、生态环境恶化的空前挑战。以可再生的生物资源替代不可再生的化石资源,实现工业原材料来源的根本转变;以条件温和的生物转化替代化工炼制,实现工业生产模式的转变;以环境友好型产品替代生物相容性差、环境污染严重的产品,实现生产生活消费模式的转变,是转变经济增长模式、保障社会经济可持续发展的重大战略需求。
自20世纪70年代以来,以DNA重组技术、淋巴细胞杂交瘤技术和细胞大规模培养技术的发明及应用为标志的现代生物技术取得了重大突破,并与医药和农业结合,带来了生物技术的两次浪潮。继医药和农业之后,工业生物技术已经被广泛看作是“生物技术的第三次浪潮”,利用生物催化剂包括生物体(微生物)和酶类,将可再生的生物物质高效转化为各种化合物、高分子材料以及生物能源等,是这一技术的核心内容。由于生物催化剂的高效性和高选择性,它在化学工业上的应用已经具有越来越大的吸引力。它们易于催化得到相对较纯的产品,因此可减少废物排放且可以完成传统化学所不能胜任的位点专一性、化学专一性和立体专一性催化。
本书结合生物化工领域前沿进展,涵盖了工业生物技术工程化和产业化主要单元的共性技术,从理论阐述到应用研究进展,展示了近年来取得的一些重大进展并有重要应用前景的工业生物技术成果及发展趋势。内容侧重先进性和实用性,原理的阐述深入浅出,参考资料十分详尽,对工业生物技术研究具有重要的参考价值。
工业生物技术正处于调整发展的起步时期,我国与国际发达国家相比,虽然总体上存在较大差距,但也取得了一些令人瞩目的成绩,只要奋起直追,仍有赶超甚至独树一帜的可能。希望本书的中文译本对我国从事工业生物技术研究和开发的人员有所助益。
本书的翻译、审校、统稿和定稿工作是在高福、曹竹安教授的组织协调下,主要由清华大学生物化工研究所、中国科学院微生物研究所的第一线科技骨干完成的,他们在繁重的科研任务之余,抽出时间将本书译成中文。在后期,李寅、周杰、张艳禾、张延年、贾开志、朱岩、董红军等同志做了大量工作。在此,我谨向所有参加译校工作的同志们致以崇高的敬意和感谢。
科学出版社多位领导和编辑为确保高质量地完成本书的翻译、定稿和出版工作付出了大量精力。夏梁等同志在书稿加工和质量把关方面付出了大量心血,在此谨向他们表示由衷的感谢。
本书的翻译专业性强、工作量大、时间要求紧,参加译校的主要同志虽然都是科研工作第一线的高级研究人员和博士研究生,但由于知识、能力、精力和水平所限,书中错误和不当之处在所难免,敬请专家和读者批评指正。
文摘插图:
