分享
 
 
 

实用语义网RDFS与OWL高效建模(英文版)(图灵原版计算机科学系列)(Semantic Web for the working ontologist effective modeling in RDFS and OWL)

实用语义网RDFS与OWL高效建模(英文版)(图灵原版计算机科学系列)(Semantic Web for the working ontologist effective modeling in RDFS and OWL)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,计算机与互联网,计算机控制仿真与人工智能,人工智能,
  品牌: 阿利芒

基本信息·出版社:人民邮电出版社

·页码:330 页

·出版日期:2009年

·ISBN:7115193843/9787115193841

·条形码:9787115193841

·包装版本:1版

·装帧:平装

·开本:16

·正文语种:英语

·丛书名:图灵原版计算机科学系列

·外文书名:Semantic Web for the working ontologist effective modeling in RDFS and OWL

产品信息有问题吗?请帮我们更新产品信息。

内容简介《实用语义网RDFS与OWL高效建模》(英文版)是语义网的入门教程,详细讲述语义网的核心内容的语言,包括语义网的概念、语义建模等。语义网的发展孕育着万维网及其应用的一场革命,作为语义网核心内容的语言:RDF和OWL,逐渐得到广泛的重视和应用。

《实用语义网RDFS与OWL高效建模》(英文版)对于任何对语义网感兴趣的专业技术人员都是十分难得的参考书。

作者简介DeanAllemang,世界知名的语义网专家。英国剑桥大学数学专业硕士,美国俄亥俄州立大学计算机专业博士。有丰富的语义网开发经验,曾创办了最早的一家语义网技术公司,目前担任美国领先的语义网技术公司TopQLladrant的首席科学家。JoumalofWebSemantics编委。世界最大的语义网研究机构DigitalEnterprise研究院的评审委员会成员。自2003年起一直担任国际语义网会议工业应用方向的主席。

JamesHendler,语义网的创始人之一,万维网联盟语义网协调组成员。美国人工智能协会和英国计算机协会会士。曾任美国国防部高级研究计划局(DARPA)的信息系统办公室首席科学家。目前是Rensselaer理工学院教授,并兼任麻省理工学院Web科学研究项目的副主任。他还是IEEEIntelligentSystems的主编,也是第一位担任美国《科学》杂志评审委员的计算机科学家。

媒体推荐“本书正是我这些年一直期待的,它的出版将帮助更多人真正理解语义网。我相信它对于语义网社区的作用,就像《Java编程思想》之于Java社区。”

——HenryStory,Sun公司语义网专家

“本书的两位作者都是语义网的权威,一个来自学界,一个来自业界,堪称完美组合。他们使原本晦涩难懂的语义网和相关的知识表示标准变得生动易懂。强烈推荐。”

——MarkA.Musen,斯坦福大学教授,著名开源语义网平台Prot6g6项目负责人

“Hendler和Allemang的这本书正是我们一直在寻找的。以前的同类图书对做实际工作的人帮助甚微,而这本书可读性很强,例子丰富而且简单易懂。我推荐大家都去买这本书。”

——DavidMcComb

编辑推荐由Web之父TimJohnBertlers-Lee提出的语义网标志着又一场革命,它要大大提升万维网,为其内容添加语义,使其成为人们与计算机系统共享数据、信息和知识的更为强大的通用媒介。随着Web2.O和云计算等概念的不断深入人心。语义网的思想和技术已经逐渐融入到各种主流的软件(如Oracle、Photostlop)和Web应用(如社区网站、搜索)中。

但是,长期以来,语义网方面的资料严重缺乏,除了标准规范本身之外,相关的图书基本上只是触及皮毛,缺乏实战指导。《实用语义网RDFS与OWL高效建模》(英文版)填补了这一空白。它由两位语义网世界级权威合作撰写。已经成为此领域不可或缺的权威著作。书中针对程序员和领域专家。在透彻而详细地讲述了语义网及其核心技术(RDFS和OW[.)的基础知识之后。提供了大量解决实际问题的方案、实例、技巧和经验。阅读《实用语义网RDFS与OWL高效建模》(英文版)之后,读者可以大大加深对语义网的理解。充满自信地面对今天和未来的技术挑战。

目录

CHAPTER 1 What Is the Semantic Web?

What Is a Web?

Smart Web, Dumb Web

Smart Web Applications

A Connected Web Is a Smarter Web

Semantic Data

A Distributed Web of Data

Features of a Semantic Web

What about the Round-Worlders?

To Each Their Own

There's Always One More

Summary

Fundamental Concepts

CHAPTER 2 Semantic Modeling

Modeling for Human Communication

Explanation and Prediction

Mediating Variability

Variation and Classes

Variation and Layers

Expressivity in Modeling

Summary

Fundamental Concepts

CHAPTER 3 RDF——The Basis of the Semantic Web

Distributing Data Across the Web

Merging Data from Multiple Sources

Namespaces, URIs, and Identity

Expressing URIs in Print

Standard Namespaces

Identifiers in the RDF Namespace

Challenge: RDF and Tabular Data

Higher-Order Relationships

Alternatives for Serialization

N-Triples

Notation 3 RDF (N3)

RDF/XML

Blank Nodes

Ordered Information in RDF

Summary

Fundamental Concepts

CHAPTER 4 Semantic Web Application Architecture

RDF Parser/Serializer

Other Data Sources——Converters and Scrapers

RDF Store

RDF Data Standards and Interoperability of RDF Stores

RDF Query Engines and SPARQL

Comparison to Relational Queries

Application Code

RDF-Backed Web Portals

Data Federation Summary

Fundamental Concepts

CHAPTER 5 RDF and Inferencmg

Inference in the Semantic Web

Virtues of Inference-Based Semantics

Where are the Smarts?

Asserted Triples versus Inferred Triples

When Does Inferencing Happen?

Inferencing as Glue Summary

Fundamental Concepts

CHAPTER 6 RDF Schema

Schema Languages and Their Functions

What Does It Mean? Semantics as Inference

The RDF Schema Language

Relationship Propagation through

rdfs:subPropertyOf

Typing Data by Usage——rdfs:domainand rdfs:range

Combination of Domain and Range with

rdfs:subClassOf

RDFS Modeling Combinations and PatternsSet Intersection

Property Intersection Set Union

Property Union

Property Transfer

Challenges

Term Reconciliation

Instance-Level Data Integration

Readable Labels with rdfs:labelData Typing Based on Use

Filtering Undefined Data

RDFS and Knowledge Discovery

Modeling with Domains and Ranges

Multiple Domains/Ranges

Nonmodeling Properties in RDFS

Cross-Referencing Files: rdfs:seeAlso

Organizing Vocabularies: rdfs:isDef'medBy

Model Documentation: rdfs:comment

Summary

Fundamental Concepts

CHAPTER 7 RDFS-Plus

Inverse

Challenge: Integrating Data that Do Not Want to Be Integrated

Challenge: Using the Modeling Language to Extend the Modeling language

Challenge: The Marriage of Shakespeare

Symmetric Properties

Using OWL to Extend OWL Transitivity

Challenge: Relating Parents to Ancestors

Challenge: Layers of Relationships

Managing Networks of Dependencies

Equivalence

Equivalent Classes

Equivalent Properties

Same Individuals

Challenge: Merging Data from Different Databases

Computing Sameness——Functional Properties

Functional Properties

Inverse Functional Properties

Combining Functional and Inverse Functional Properties

A Few More Constructs

Summary

Fundamental Concepts

CHAPTER 8 Using RDFS-Plus in the Wild SKOS

Semantic Relations in SKOS

Meaning of Semantic Relations

Special Purpose Inference

Published Subject Indicators

SKOS in Action

FOAF

People and Agents

Names in FOAF

Nicknames and Online Names

Online Persona

Groups of People Things People Make and Do

Identity in FOAF

It's Not What You Know, It's Who You Know

Summary

Fundamental Concepts

CHAPTER 9 Basic OWL

Restrictions

Example: Questions and Answers

Adding "Restrictions"

Kinds of Restrictions

Challenge Problems

Challenge: Local Restriction of Ranges

Challenge: Filtering Data Based on Explicit Type

Challenge: Relationship Transfer in SKOS

Relationship Transfer in FOAF

Alternative Descriptions of Restrictions Summary

Fundamental Concepts

CHAPTER 10 Counting and Sets in OWL

Unions and Intersections

Closing the World

Enumerating Sets with owl:oneOf

Differentiating Individuals with owl:differentFrom

……

CHAPTER 11 Using OWL in the Wild

CHAPTER 12 Good and Bad Modeling Practices

CHAPTER 13 OWL Levels and Logic

CHAPTER 14 Conclusions

APPENDIX Frequently Asked Questions

Further Reading

Index

……[看更多目录]

序言In 2003, when the World Wide Web Consortium was working toward the ratifi-cation of the Recommendations for the Semantic Web languages RDF, RDFS, andOWL, we realized that there was a need for an industrial-level introductorycourse in these technologies. The standards were technically sound, but, as istypically the case with standards documents, they were written with technicalcompleteness in mind rather than education. We realized that for this technol-ogy to take off, people other than mathematicians and logicians would haveto learn the basics of semantic modeling.

Toward that end, we started a collaboration to create a series of trainingsaimed not at university students or technologists but at Web developers whowere practitioners in some other field. In short, we needed to get the SemanticWeb out of the hands of the logicians and Web technologists, whose job hadbeen to build a consistent and robust infrastructure, and into the hands of thepractitioners who were to build the Semantic Web. The Web didn't grow tothe size it is today through the efforts of only HTML designers, nor would theSemantic Web grow as a result of only logicians' efforts.

After a year or so of offering training to a variety of audiences, we delivered atraining course at the National Agriculture Library of the U.S. Department ofAgriculture. Present for this training were a wide variety of practitioners inmany fields, including health care, finance, engineering, national intelligence,and enterprise architecture. The unique synergy of these varied practitionersresulted in a dynamic four days of investigation into the power and subtlety ofsemantic modeling. Although the practitioners in the room were innovativeand intelligent, we found that even for these early adopters, some of the newways of thinking required for modeling in a World Wide Web context weretoo subtle to master after just a one-week course. One participant had registeredfor the course multiple times, insisting that something else "clicked" each timeshe went through the exercises.

This is when we realized that although the course was doing a good job ofdisseminating the information and skills for the Semantic Web, another, morearchival resource was needed. We had to create something that students couldwork with on their own and could consult when they had questions. Thiswas the point at which the idea of a book on modeling in the Semantic Webwas conceived. We realized that the readership needed to include a wide varietyof people from a number of fields, not just programmers or Web application developers but all the people from different fields who were struggling to understand how to use the new Web languages.

文摘插图:

实用语义网RDFS与OWL高效建模(英文版)(图灵原版计算机科学系列)(Semantic Web for the working ontologist effective modeling in RDFS and OWL)

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有