分享
 
 
 

微纳米结构的导电聚合物

微纳米结构的导电聚合物  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,科技,一般工业技术,工程材料学,特种结构材料,
  品牌: 万梅香

基本信息·出版社:清华大学出版社

·页码:292 页

·出版日期:2008年

·ISBN:9787302174769

·条形码:9787302174769

·包装版本:1版

·装帧:精装

·开本:16

·正文语种:英语

产品信息有问题吗?请帮我们更新产品信息。

内容简介《微纳米结构的导电聚合物》适合高校和科研院所的化学、化工、物理及材料专业的研究人员、教师和研究生阅读参考。导电聚合物打破了聚合物为绝缘体的传统观念,因而被称为“第四代聚合物”。它既具有金属和半导体的导电特性,又保留了聚合物的轻质、柔性和可加工的特色。这种材料在光电子器件、传感技术、分子电子学和纳米器件以及驱动器件等方面具有潜在的应用前景。《微纳米结构的导电聚合物》比较完整、系统地介绍了导电聚合物的缘起、掺杂与导电机制、结构与性能、技术应用前景以及研究进展,特别介绍了作者采用无模板自组装方法在微纳米结构的导电聚合物的研究及其应用方面的学术贡献。《微纳米结构的导电聚合物》的内容分为5章:第1章,导论;第2章,优异的导电聚苯胺;第3章,导电聚合物的物理特性及其应用;第4章,导电聚合物的微纳米结构;第5章,无模板法自组装导电聚合物的微纳米结构。为了便于读者阅读,作者还特别给出了名词解释。

编辑推荐《微纳米结构的导电聚合物》由清华大学出版社出版。

Conducting Polymers with Micro or Nanometer Structure describes a topicdiscovered by three winners of the Nobel Prize in Chemistry in 2000: AlanJ. Heeger, University of California at Santa Barbara, Alan G. MacDiarmid atthe University of Pennsylvania, and Hideki Shirakawa at the University ofTsukuba. Since then, the unique properties of conducting polymers have ledto promising applications in functional materials and technologies. The bookfirst briefly summarizes the main concepts of conducting polymers beforeintroducing micro/nanostructured conducting polymers dealing with theirsynthesis, structural characterizations, formation mechanisms, physical and chemical properties, and potential applications in nanomaterials andnanotechnology. The book is intended for researchers in the related fieldsof chemistry, physics, materials, nanomaterials and nanodevices. MeixiangWan is a professor at the Institute .of Chemistry, Chinese Academy ofSciences, Beijing.

目录

Chapter I Introduction of Conducting Polymers

1.1 Discovery of Conducting Polymers

1.2 Structural Characteristics and Doping Concept

1.3 Charge Carriers and Conducting Mechanism

References

Chapter 2 Polyaniline as A Promising Conducting Polymer

2.1 Molecular Structure and Proton Doping

2.2 Synthesis Method

2.2.1 Chemical Method

2.2.2 Electro-Chemical Method

2.2.3 Mechano-Chemical Route

2.3 Physical Properties .

2.3.1 Nonlinear Optical (NLO)

2.3.2 Electrical and Charge Transport Properties

2.3.3 Magnetic Properties

2.3.4 Other Properties

2.4 Solubility and Processability

2.4.1 Solubility

2.4.2 Processability

References

Chapter 3 Physical Properties and Associated Applications of Conducting Polymers

3.1 Electronic Devices

3.1.1 Light Emitting Diodes (LEDs)

3.1.2 Solar Cells

3.2 EMI Shielding and Microwave Absorbing Materials

3.2.1 EMI Shielding Materials

3.2.2 Microwave Absorption Materials (Stealth Materials)

3.3 Rechargeable Batteries and Supercapacitors

3.3.1 Rechargeable Batteries

3.3.2 Supercapacitors

3.4 Sensors

3.5 Electrochromic Devices and Artificial Muscles

3.5.1 Electrochromic Devices

3.5.2 Conducting Polymer-Based Artificial Muscles

3.6 Others

3.6.1 Corrosion Materials

3.6.2 Electrostatic Dissipation Materials

3.6.3 Separated Membrane

3.6.4 Conducting Textiles

References

Chapter 4 Conducting Polymer Nanostructures

4.1 Synthetic Method and Formation Mechanism

4.1.1 Hard Template Method

4.1.2 Soft Template Method

4.1.3 Other Methods

4.1.4 PEDOT Nanostructures

4.2 Composite Nanostructures

4.2.1 Metal-Conducting Polymer Composite Nanostructures

4.2.2 Conducting Polymer/Carbon Nanotube Composites

4.2.3 Core-Shell Composites

4.2.4 Chiral and Biological Composite Nanostructures

4.2.5 Inorganic Oxide Nano-Crystals and CP Composites

4.3 Physical Properties and Potential Application

4.3.1 Electrical and Transport Properties

4.3.2 Potential Applications

4.3.3 Nano-arrays or Nano-patents

References

Chapter 5 Template-Free Method to Conducting Polymer MicrofNanostructures

5.1 Template-Free Method

5.1.1 Discovery of Template-Free Method

5.1.2 Universality of Template-Free Method

5.1.3 Controllability of Morphology and Diameter by Template-Free Method

5.1.4 Self-Assembly Mechanism of Micro/Nanostructures by A Template-Free Method

5.2 Multi-Functionality of Micro/Nanostmctures Based on Template-Free Method

5.2.1 Processing Composite Nanostructures

5.2.2 PPy-CNT Composite Nanostructures

5.2.3 Electro-Magnetic Functional Micro/Nanostructures

5.2.4 Electro-Optic Micro/Nanostructures

5.2.5 Super-Hydrophobic 3D-Microstructures Assembled from 1D-Nanofibers

5.3 Mono-Dispersed and Oriented Micro/Nanostructures

5.3. I Template-Free Method Combined with A1203 Template for Oriented Nanowires

5.3.2 Template-Free Method Associated with A Deposition to Mono-Dispersed and Oriented Microspheres

5.4 Electrical and Transport Properties of Conducting Polymer Nanostructures

5.4.1 Room Temperature Conductivity

5.4.2 Temperature Dependence of Conductivity

5.4.3 Electrical Properties of A Single Micro/Nanostructure

5.4.4 Magneto-Resistance

5.5 Special Methods for Micro/Nanostructures of Conducting Polymers

5.5.1 Aniline/Citric Acid Salts as The "Hard-Templates" for Brain-like Nanostructures

5.5.2 Cu20 Crystal as A Hard Template

5.5.3 Water-Assisted Fabrication of PANI-DBSA Honeycomb Structure

5.5.4 Reversed Micro-Emulsion Polymerization

5.6 Potential Applications of Conducting Polymer with Micro/Nanostructures

5.6.1 Microwave Absorbing Materials

5.6.2 EMI Shielding Materials

5.6.3 Conducting Polymer Nanostructure-Based Sensors Guided by Reversible Wettability

References

Appendix Term Definitions

……[看更多目录]

序言A traditional idea is that organic polymer is regarded as an excellent insulatorbecause of its saturated macromolecule. However, a breakthrough of organicpolymer imitating a metal was coming-out in the 1960s——1970s. It implied electronsin polymers need to be free to move and not bound to the atoms. The breakthroughwas realized by awarders of Nobel Chemistry Prizes in 2000, who were AlanJ. Heeger at the University of California at Santa Barbara, USA, AlanG. MacDiarmid at the University of Pennsylvania, Philadelphia, USA, and HidekiShirakawa at the University of Tsukuba, Japan. In 1977, actually, they accidentallydiscovered that room-temperature conductivity of conjugated polyacetylenedoped with iodine was as high as 103 S/cm, which was enhanced by 101~ timescompared with original insulating polyacetylene. The change of the electricalproperties from insulator to conductor was subsequently ascribed to "doping", butcompletely different from the doping concept as applied in inorganic semiconductors.The unexpected discovery not only shattered a traditional idea that organicpolymers are insulators, but also established a new filed of conducting polymersor "synthetic metals".

文摘插图:

微纳米结构的导电聚合物

Preparation of metal quantum dots has been recently received considerableattention in the field of nano-science and nano-technology owing to their interestingoptical, electrical, and catalytic properties. Block copolymer micelles provide anexcellent method for such dispersions, by which the particles of a definite sizecan be formed and stabilized within the core. Thus the nano-sized compartmentsformed in this way can serve as nano-reactors for the stabilization of inorganiccrystallites or clusters, and the particle size and inter-particle distance can becontrolled by the choice of a block copolymer [155]. As a result, the blockcopolymer technique provides an efficient template and allows facile formationof transparent, homogeneous nano-dispersions. Moreover the block copolymertechnique is able to prepare thin films of colloidal polymer stabilized metaldispersions that allow one to prepare the novel functional materials with uniqueoptical and electrical properties. The block copolymer approach has been usedfor the preparation of conducting polymer nanostructures containing metalnano-particles, for instance, gold-PPy core-shell particles or nanostructures ofAu-PPy composites were prepared by using block copolymer micelles as thetemplate [156].

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有